Conformation and molecular topography of the N-terminal segment of surfactant protein B in structure-promoting environments

LARRY M. GORDON,1 SUZANNA HORBATH,2 MARJORIE L. LONGO,3 JOSEPH A.N. ZASADZINSKI,4 H. WILLIAM TAEUSCH,5 KYM FAULL,6 CAROL I. LUNG1, AND ALAN J. WARING1

1 Department of Pediatrics, Martin Luther King Jr./Charles R. Drew University Medical Center and Perinatal Laboratories, Harbor University of California Los Angeles Medical Center, Los Angeles, California 90039
2 Biopolymer Synthesis Center, Division of Biology, California Institute of Technology, Pasadena, California 91125
3 Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
4 Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, California 93106
5 Department of Pediatrics, San Francisco General Hospital/UCSF San Francisco, California 94110
6 Center for Molecular and Medical Sciences Mass Spectrometry, Departments of Psychiatry and Biobehavioral Sciences, and Chemistry and Biochemistry, and Neuropsychiatric Institute, UCLA, Los Angeles, California 90024

(Received December 5, 1995; Accepted May 21, 1996)

Abstract

Although the effects of surfactant protein B (SP-B) on lipid surface activity in vitro and in vivo are well known, the relationship between molecular structure and function is still not fully understood. To further characterize protein structure-activity correlations, we have used physical techniques to study conformation, orientation, and molecular topography of N-terminal SP-B peptides in lipids and structure-promoting environments. Fourier transform infrared (FTIR) and CD measurements of SP-B1-22 (residues 1-25) in methanol, SDS micelles, egg yolk lecithin (EYL) liposomes, and surfactant lipids indicate the peptide has a dominant helical content, with minor turn and disordered components. Polarized FTIR studies of SP-B1-22 indicate the long molecular axis lies at an oblique angle to the surface of lipid films. Truncated peptides were similarly examined to assign more accurately the discrete conformations within the SP-B1-22 sequence. Residues Cys-8-Gly-25 are largely α-helix in methanol, whereas the N-terminal segment Phe-1-Cys-8 had turn and helical propensities. Addition of SP-B1-22 spin-labeled at the N-terminal Phe (i.e., SP-B1-22γ) to SDS, EYL, or surfactant lipids yielded electron spin resonance spectra that reflect peptide bound to lipids, but retaining considerable mobility. The absence of characteristic radical broadening indicates that SP-B1-22 is minimally aggregated when it interacts with these lipids. Further, the high polarity of SP-B1-25 argues that the reporter on Phe-1 resides in the headgroup of the lipid dispersions. The blue-shift in the endogenous fluorescence of Trp-9 near the N-terminus of SP-B1-25 suggests that this residue also lies near the lipid headgroup. A summary model based on the above physical experiments is presented for SP-B1-25 interacting with lipids.

Keywords: CD spectroscopy; ESR spectroscopy; fluorescence; FTIR spectroscopy; lipid-peptide interactions; N-terminal domain; surfactant protein B

Reprint requests to: Alan J. Waring, Research and Educational Institute, Inc., Bldg. RB-I, 1124 W. Carson Street, Torrance, California 90502-2064; e-mail: awaring@meded.com.ucl.edu.

Abbreviations: FTIR, Fourier transform infrared spectroscopy; DPPC, dipalmitoylphosphatidylcholine; TFA, trifluoroacetic acid; TFE, trifluoroethanol; EYL, egg yolk lecithin; PG, phosphatidyl glycerol; Tanaka lipids, DPPC/mixed PG/palmitic acid (66:22:9, wt%); PBS, phosphate-buffered saline; ATR, attenuated total reflectance; NS, nitroxide stearate; SP-B, surfactant protein B; SP-B1-22, N-terminal domain of SP-B, residues 1-25; SP-B1-25γ, amino spin-labeled N-terminal domain of SP-B, residues 1-25; SP-B1-25γ, truncated N-terminal segment of SP-B, residues 1-9; SP-B1-22, truncated N-terminal segment of SP-B, residues 8-25; SP-B1-25γ, truncated N-terminal segment of SP-B, residues 1-9; SP-B1-25γ, truncated N-terminal segment of SP-B, residues 15-25; aθ, isotropic hyperfine coupling constant; S, polarity-corrected order parameter; ESR, electron spin resonance; [θ]MRes, mean residue ellipticity (deg cm² dmol⁻¹).
Surfactant protein B is a small, lipid-associating protein found in mammalian lung surfactant (Fossmayer, 1988). The protein is encoded on chromosome two and synthesized in type II pneumocytes. The mature protein is very hydrophobic and partitions into the chloroform phase with surfactant lipids when isolated from lung lavage using the Folch et al. (1957) extraction procedure. Plasma desorption mass spectral analysis of native SP-B indicates that the protein has no posttranslational modifications other than disulfide bond formation (Curstedt et al., 1990). The dominant molecular species of SP-B is a disulfide-linked homodimer, although variable amounts of monomeric SP-B are also observed in samples isolated from lung surfactant. Each monomeric unit has disulfide links at the mid-sequence and N-terminal and C-terminal sections, suggesting the main chain may assume a hairpin-like format. The N-terminal amphipathic domain has a unique primary sequence, with a short hydrophobic multiple proline segment that includes the N-terminal phenylalanine residue and is adjacent to a theoretically predicted amphipathic helical segment.

A unique primary structure for SP-B suggests specific protein domain function. One major role of SP-B in the lung is the interaction with surfactant lipids that maintains a monolayer film at the dynamically changing alveolar air interface required for gas exchange. The N-terminal sequence of SP-B (SP-B₁₋₂₅, residues 1–25; Fig. 1) has been shown to have very specific interactions with amphipathic lipids. The positively charged amino terminus of SP-B increases the collapse pressure of surfactant lipid monolayers containing palmitic acid, suggesting that this cationic peptide interacts with specific anionic lipids to remove the driving force for squeeze-out of the lipid from the surface film (Longo et al., 1993; Lipp et al., 1996). Another indication of specific interaction of SP-B with lipids is insertion of the protein into monolayers at varying surface pressures (Oosterlaken-Dijkstra et al., 1991). The critical insertion pressure, an index of the degree of peptide association with lipid films and membrane systems, is very high for the amino-terminal peptide of SP-B in contrast to the C-terminal domain of the protein (Bruni et al., 1991; Fan et al., 1991). The N-terminal domain of SP-B has also been shown to mediate lipid-vesicle mixing (Longmuir et al., 1992), as does the native SP-B (Oosterlaken-Dijkstra et al., 1992).

Both theoretical and experimental studies have been performed to assess the secondary and tertiary conformations of SP-B. Theoretical analysis of the primary sequence of SP-B, using the hydrophobic moment algorithm and Chou-Fasman secondary structure predictions, suggests several amphipathic

A	SP-B₁₋₂₅ (N-terminal segment of human SP-B, residues 1-25)
	FPIPLPYCWLCRALIKRIQAMIPKGCOOH
	1 25

B	SP-B₁₋₂₅* (N-terminal segment of human SP-B, phenylalanine spin-labeled)
	*FPIPLPYCWLCRALIKRIQAMIPKGCOOH
	1 25

C	SP-B₈₋₂₅ (Truncated N-terminal segment of human SP-B, residues 8-25)
	Ac CWLCRALIKRIQAMIPKGCOOH
	8 25

D	SP-B₁₅₋₂₅ (Truncated N-terminal segment of human SP-B, residues 15-25)
	Ac CKRIQAMIPKGCOOH
	15 25

E	SP-B₁₋₉ (Truncated N-terminal segment of human SP-B, residues 1-9)
	FPIPLPYCW CONH₂
	1 9

Fig. 1. Amino acid sequences of peptides derived from the N-terminal segment of human SP-B, residues 1-25. Residues are numbered from the N-terminal phenylalanine; one-letter codes for amino acids are used. Ac indicates N-acetylation of the peptide, and CONH₂ represents carbamoylation of the C-terminal residue. A: SP-B₁₋₂₅, the N-terminal segment of SP-B, residues 1-25. B: SP-B₁₋₂₅*, the N-terminal segment of SP-B, residues 1-25, spin-labeled at the amino-terminal phenylalanine (F*) with succinimidy1 2,2,5,5-tetramethyl 3-pyrrrole. C: SP-B₈₋₂₅, amphipathic helical domain of the N-terminal segment of SP-B, residues 8-25. D: SP-B₁₅₋₂₅, amphipathic helical domain of the N-terminal segment of SP-B, residues 15-25. E: SP-B₁₋₉, insertion domain of the N-terminal segment of SP-B, residues 1-9.
helical segments near the N-terminus and C-terminus of the 78-residue molecule (Waring et al., 1989; Takahashi et al., 1990; Bruni et al., 1991). CD, FTIR, and Raman spectroscopy of native SP-B and selected amphipathic segments indicates a dominant helical conformation in structure-promoting solvents, such as TFE:water, surfactant lipid dispersions, oriented lipid films, and detergent micelle dispersions (Bruni et al., 1991; Fan et al., 1991; Vincent et al., 1991; Longo et al., 1992; Oosterlaken-Dijkstra et al., 1992; Vandenbosche et al., 1992; Pérez-Gil et al., 1993). Oriented CD measurements and polarized FTIR determinations of the native protein in surfactant lipid films further indicate that the protein helical axis is oriented approximately parallel to the surface of the film (Oosterlaken-Dijkstra et al., 1991; Vandenbosche et al., 1992).

Other physical experiments on the topography of SP-B in surfactant lipid dispersions and membrane-mimic environments have suggested that the protein lies near the polar headgroup. For example, studies with fluorescent lipids, NMR measurements of deuterated surfactant lipids, and determinations of lipid ordering with Raman spectroscopy indicate that addition of native SP-B, or synthetic peptide mimics, changes the molecular order of the lipid near the polar interface (Baatz et al., 1990; Vincent et al., 1991, 1993; Wiedman, 1991; Morrow et al., 1993). An early ESR study of synthetic surfactant lipid dispersions incorporated with spin-labeled phospholipid showed that addition of native SP-B, or synthetic peptides based on human SP-B, increases the molecular ordering of the lipid dispersion near the five-carbon position of the phospholipid acyl chains (Waring et al., 1989). A more recent examination (Pérez-Gil et al., 1995) of lipids labeled with phospholipid spin probes not only confirmed that SP-B decreased the motional flexibility in the lipid headgroup, but also indicated that this motional restriction extended more or less uniformly throughout the length of the lipid chains. Pérez-Gil et al. (1995) suggested that these effects could be due to direct SP-B interactions with either the lipid headgroup region or fatty acyl chains embedded in deeper regions of the bilayer. Clearly, physical studies that examine solely protein perturbations on lipid flexibility cannot unequivocally assign the location of SP-B in lipid bilayers or monolayers.

Despite considerable information on the overall conformation of SP-B in lipid dispersions, and also on the interactions of this protein with lipid dispersions, much less is known about the residue-specific topology of SP-B in surfactant lipids and structure-promoting environments such as detergent micelles. Greater details on the residue-specific interactions of SP-B domains may provide a better understanding of the structure-function correlates of this protein. In the present study, we describe the interaction of several key amino acid residues of the N-terminal SP-B25 peptide in various structure-promoting environments. Results from these experiments have led to a more precise model for SP-B25 interacting with surfactant lipid dispersions.

Results

Conformation and helical axis orientation of SP-B25 in structure-promoting environments

Measurements of SP-B25 were made in several simple solvents that were found to optimize the secondary conformation of the N-terminal segment. For SP-B25 suspended in a series of solvents and interfacial-mimic systems, typical FTIR spectra of the amide I band are shown in Figure 2. Curve fitting of the spectra (Fig. 3; Table I) indicates that SP-B25 has a dominant helical component (centered at 1,658 cm⁻¹) in methanol and other structure-promoting environments. Other assignments of the secondary structure of SP-B25 used the criteria of Susi and Byler (1986), and indicated disordered (random) structures about 1,645 cm⁻¹, a beta sheet component at 1,630 cm⁻¹, and possible beta turns from 1,660 to 1,682 cm⁻¹. The relative proportions of the secondary conformational components were very similar for each of the structure-promoting environments, which included methanol, SDS micelles, EYL multilamellar vesicles, and synthetic surfactant lipid dispersions (i.e., Tanaka lipids) (Table I).

Smaller peptides based on SP-B25 were also studied in methanol to localize the above structural features. The C-terminal segment of SP-B25 comprising residues 15-25 (i.e., SP-B15-25) had a distinctly different FTIR-amide I spectrum (Fig. 4C) than that of the full-length 25-residue peptide (Fig. 3). The major FTIR peak for SP-B15-25 was at 1,637 cm⁻¹, with less intense contributions at 1,645 cm⁻¹, 1,658 cm⁻¹, and 1,674 cm⁻¹. Complementary CD spectra (Fig. 5B) of the peptide in methanol show dichroic minima at 222 and 205 nm, typical of a helix-like structure with ≈36.7% helical conformation based on the 222-nm dichroic minimum. These FTIR and CD observations suggest that SP-B15-25 may assume structures characteristic of Type III β turns or 3₁₀ helix, as well as α helix and disordered conformations (Milick et al., 1992; Fiori & Millhauser, 1995). When the C-terminal segment is extended to include residues 8-25 (i.e., SP-B8-25), the FTIR-amide I spectrum (Fig. 4B) indicates a major α helical component centered at 1,658 cm⁻¹.
Fourier self deconvolution and curve-fitting confirmed that the predominant conformation for SP-B_{1-25} in methanol was helical, but also indicated β-sheet and β-turn contributions (Table 2). CD analysis of SP-B_{1-25} in methanol showed typical α-helical-like spectra (Fig. 5C) with a well-defined double minimum at 222 and 208 nm and Δ35.4% helix. In this context, it should be noted that the corresponding CD spectrum of the full-length SP-B_{1-25} in methanol (Fig. 5A) also indicated a substantial helical component (46.6% helix), with a well-defined double minimum at 222 and 208 nm. Given the above FTIR and CD results with the full-length and truncated SP-B_{1-25} peptides, it is likely that the segment spanning residues 8–25 assumes the dominant helical conformation in the full-length SP-B_{1-25} peptide.

CD and FTIR studies were also performed with the SP-B_{1-9} peptide, which includes the hydrophobic, proline-rich N-terminus and predicted tetra-peptide B-turn element (Fig. 1). FTIR spectra of SP-B_{1-9} in methanol showed major components at 1,662, 1,656, 1,641, and 1,633 cm⁻¹, suggesting populations of β-turn and helical conformers (Hollosi et al., 1994). Fourier self deconvolution and curve fitting indicated that β-turn structures were the principal conformation for SP-B_{1-9} in methanol, although significant contributions were also found for β-sheet and helical conformations (Table 2). CD measurements of SP-B_{1-9}, suspended in methanol (Fig. 5D), also confirm turn and helical propensities of the N-terminal segment, and indicate possible type I β-turn character (Perzel et al., 1993). Our finding that SP-B_{1-9} assumes multiple conformations in methanol may be because the many proline residues confer a dynamic quality to the sequence, thereby fraying the conformation of this short N-terminal segment. In light of our FTIR results indicating a significant β-turn conformation for SP-B_{1-25} suspended in methanol and that the principal conformation for SP-B_{1-9} in this solvent is β-turn, residues 1–9 probably assumes β-turn in the full-length peptide.

Polarized FTIR measurements were also performed on the SP-B_{1-25} peptide in self films spread from solvents onto germanium ATR substrates, and in multilayer films of SDS, EYL, and synthetic surfactant lipids (i.e., DPPC:PG and Tanaka lipids) using the ATR technique (Goorunaghkigh et al., 1990). When a portion of the SP-B_{1-25} peptide assumes a helical conformation, this allows the determination of the angle (θ) of the helical axis orientation and proportions of secondary structure for SP-B_{1-25} in solvents and lipid dispersion films, as estimated from Fourier self-deconvolution of the FTIR spectra of the peptide amide I band.

<table>
<thead>
<tr>
<th>System</th>
<th>% Conformationa</th>
<th>Orientation</th>
<th>(R_{ATR})b</th>
<th>Anglec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>37.3</td>
<td>27.4</td>
<td>22.7</td>
<td>1.22d</td>
</tr>
<tr>
<td>SDS</td>
<td>42.5</td>
<td>26.4</td>
<td>16.7</td>
<td>1.31</td>
</tr>
<tr>
<td>EYL</td>
<td>36.2</td>
<td>31.8</td>
<td>17.3</td>
<td>1.28</td>
</tr>
<tr>
<td>DPPC:PG</td>
<td>40.6</td>
<td>27.7</td>
<td>17.5</td>
<td>1.29</td>
</tr>
<tr>
<td>Tanaka lipids</td>
<td>39.0</td>
<td>29.8</td>
<td>14.0</td>
<td>1.29</td>
</tr>
</tbody>
</table>

a Data are the means of four separate determinations and have an SE ± 5% or better.
b \(R_{ATR} \) is the dichroic ratio \(A_{90}/A_{33} \), where \(A_{90} \) is the polarized absorbance measurement perpendicular to the ATR plate, and \(A_{33} \) is the polarized absorbance measurement parallel to the ATR plate. Angles estimated from parametric plot of \(R_{ATR} \) as a function of the order parameter according to Brabender et al. (1987).
c This measurement represents the angle with respect to the plane of the lipid-bulk aqueous interface, and is the mean of four separate determinations with an SE of ± 3 degrees.
d SP-B_{1-25} sample (10–100 μg peptide) dried on to ATR plate from a methanol solution.
of lipid (Table 1), confirming the overall amphiphatic character of the major helical component on the peptide. For SP-B_{1-25} incorporated into detergent SDS, the angle (θ) for the peptide helical axis significantly increased (Table 1), indicating an enhanced angle of insertion with respect to the surface of the germanium-SDS film; on the other hand, the SDS acyl chains were oriented near to the normal (R_{ATR} = 1.21) of the crystal surface. When SP-B_{1-25} was dispersed into EYL or synthetic surfactant lipids (DPPC-PG and Tanaka lipids), the θ for the peptide helical axis with respect to the germanium-lipid film was intermediate to that observed with methanol and SDS (Table 1). Contrarily, the acyl chains of the lipid–peptide films were oriented close to normal (EYL, R_{ATR} = 1.54; Tanaka lipids, R_{ATR} = 1.06) with respect to the surface of the germanium substrate. The truncated surfactant peptide SP-B_{5-25} had an R_{ATR} of 1.23 and a θ of 40° for peptide in EYL and Tanaka lipid films, suggesting that deletion of N-terminal residues 1–7 altered the mean orientation of the helical component in these lipid environments.

ESR studies with the spin-labeled N-terminal SP-B_{1-25} peptide

Initial ESR studies were performed on the spin-labeled N-terminal SP-B peptide [SP-B_{1-25}; Fig. 1] suspended in either methanol (100%) or PBS. Figure 6A shows that, at a peptide concentration of 273 μM in methanol, SP-B_{1-25} exhibits nearly isotropic motion at 39°C with minimal probe–probe interactions due to peptide aggregation (Curtain et al., 1987). Accordingly, this spectrum may be analyzed for probe mobility and polarity by calculating a rotational correlation time (τ_R = 1.55 × 10^{-10} sec) and an isotropic hyperfine coupling constant (α_N = 15.34 gauss). The low τ_R confirms that the covalently attached reporter group is rapidly tumbling in methanol, whereas the α_N value is consistent with SP-B_{1-25} sampling a relatively hydrophobic environment (Jost & Griffith, 1978).

The ESR spectrum for 14.3 μM SP-B_{1-25} suspended in PBS (Fig. 6B) is very different than that obtained for spin-labeled peptide in methanol (Fig. 6A). Figure 6B shows that the spin-labeled peptide samples two distinct environments in aqueous solution. The first component is spectral broadened, indicating that SP-B_{1-25} here resides in an environment that is motionally restricted. Besides restricted flexibility, this broadened spectral component may be partially a consequence of nitroxide radical interactions (i.e., dipolar broadening and spin–spin exchange) between aggregated SP-B_{1-25} molecules (Sauerheber et al., 1977; Curtain et al., 1987). The second component shows sharp lines (see arrows in Fig. 6B), denoting probe covalently attached to SP-B_{1-25} rapidly tumbling in a fluid environment. This freely mobile SP-B_{1-25} resides in a relatively aqueous environment, as indicated by the high α_N (=16.42 G; Table 3). One interpretation of the freely mobile component is that it is due to monomeric SP-B_{1-25} rapidly tumbling in PBS. Alternatively, this component may be due to probe, which is part of aggregated SP-B_{1-25}, but with the nitroxide reporter extending into the aqueous medium, where it is unaggregated and mobile. The well-resolved sharp-line and broadened components in Figure 6B indicate that exchange of SP-B_{1-25} between the two environments occurs slowly on the ESR time scale (i.e., > 10^{-8} sec). Estimates from double integration of the component ESR spectra

Table 2. Proportions of secondary structure for SP-B_{1-25} and truncated SP-B_{1-25} peptides in the structure-promoting solvent methanol, as estimated from Fourier self-deconvolution of the FTIR spectra of the peptide amide I band

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Helix (%)</th>
<th>β-Sheet (%)</th>
<th>β-Turn (%)</th>
<th>Disordered (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-B_{1-9}</td>
<td>16.3ᵇ</td>
<td>26.3</td>
<td>38.4</td>
<td>19.0</td>
</tr>
<tr>
<td>SP-B_{5-25}</td>
<td>44.0ᵇ</td>
<td>8.8</td>
<td>34.9</td>
<td>12.3</td>
</tr>
<tr>
<td>SP-B_{1-25}</td>
<td>37.3ᶜ</td>
<td>12.6</td>
<td>27.4</td>
<td>22.7</td>
</tr>
</tbody>
</table>

ᵃ Data are the mean of four separate determinations and have an SE ± 5% or better. Peptide samples (10–100 μg) were dried on to the ATR plate from methanol solution.
ᵇ Percent helix includes 3_α (1,638 cm⁻¹) and α-helix (1,656 cm⁻¹) spectral contributions.
ᶜ Percent helix includes the α-helix (1,656 cm⁻¹) spectral contribution.
in Figure 6B indicate that the predominant species (>97%) of SP-B1-25 in PBS is broadened (Curtain et al., 1987).

The respective environments for SP-B1-25 in PBS may be further probed using the paramagnetic broadening agent chromium oxalate (Aikenbach & Hubbell, 1988). Chromium oxalate (50 mM) obliterates the sharp "liquid-line" component (Fig. 6C); the hydrophilic, broadening agent achieves this through direct collisions with the SP-B1-25 reporter group in an aqueous environment, which shortens the electron relaxation time. This confirms our initial assignment that the sharp-line component in Figure 6B was due to the reporter of SP-B1-25 residing in aqueous medium. Contrarily, chromium oxalate only partially reduces the spectral-broadened component for SP-B1-25 in PBS (Fig. 6C), suggesting that aggregated SP-B1-25 in Figure 6B consists of chromium oxalate-sensitive and -insensitive components. It should be noted that the SP-B1-25 uptake in PBS (Fig. 6B) is exceedingly low. The % probe uptake for spin-labeled peptide added at 109 \(\mu \)M SP-B1-25 in PBS “wt” (Fig. 6B; see Materials and methods) was only 13%, consistent with the formation of peptide aggregates having limited solubility. Consequently, the low signal/noise for the spectrum of SP-B1-25 in PBS (Fig. 6B,C) precludes a more rigorous motional and broadening analysis.

It is of interest to further examine the \(\alpha_r \) values for SP-B1-25 residing in either methanol (100%) (Fig. 6A) or the sharp-line component in PBS (Fig. 6B). The \(\alpha_r \) for SP-B1-25 in methanol (15.34 G) is similar to that of the free spin label (i.e., succinimidyl 2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylate) in methanol (15.21 G). Furthermore, the \(\alpha_r \) for the sharp-line component of SP-B1-25 in PBS (16.42 G) is comparable to
Additional studies were performed to examine the interactions of SP-B125 with SDS at 39°C. At the detergent concentration (20 mM) used here, SDS is micellar and, thus, presents a macromolecular assembly that resembles an anionic membrane. Figure 7A shows the ESR spectrum of SDS with SP-B125 at a peptide/lipid ratio of 1/557. The spectrum indicates that SP-B125 binds to micellar SDS, and exhibits motion slower than that noted for SP-B125 in methanol (Fig. 6A), but much faster than that seen for aggregated peptide in PBS (Fig. 6B,C). The \(\tau_R = 28.6 \times 10^{-10} \) s in Table 3 confirms that SP-B125 is only "weakly immobilized" when bound to SDS. At the peptide/lipid ratio used here, Figure 7A indicates minimal aggregation for the spin-labeled peptide in SDS micelles (Sauerheber et al., 1977; Curtin et al., 1987), particularly when compared with the aggregated spectrum of SP-B125 in PBS (Fig. 6B).

ESR spectra further indicate that SP-B125 also binds to EYL liposomes (Fig. 7D), a mixture of DPPC and unsaturated PG.

that noted for the free spin label in PBS (16.26 G). The above findings indicate that covalent attachment of SP-B125 to the spin label does not affect the polarity of the probe environment in these two solvents. These results also suggest that the nitroxide group does not participate in the backbone conformation of SP-B125.
Table 3. ESR spectral parameters for S-NS with EYL and SP-B18,25 with methanol, EYL, SDS, and surfactant lipids at 39°C

<table>
<thead>
<tr>
<th>Solvent/lipid</th>
<th>Probe concentrationb</th>
<th>(\tau_B) (sec) (\times 10^{10})</th>
<th>(a_H) (G)</th>
<th>S²b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol (100%)</td>
<td>273 μM SP-B18,25</td>
<td>1.55 (0.06)</td>
<td>15.34 (0.06)</td>
<td>--</td>
</tr>
<tr>
<td>PBS (liquid-line)</td>
<td>14.3 μM SP-B18,25</td>
<td>16.42 (0.16)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SDS (20 mM)</td>
<td>1 SP-B18,25/557 lipid</td>
<td>28.6 (3.4)</td>
<td>15.77 (0.05)</td>
<td>--</td>
</tr>
<tr>
<td>EYL (48 mg/mL)</td>
<td>1 SP-B18,25/1818 lipid</td>
<td>33.8 (1.2)</td>
<td>16.10 (0.01)</td>
<td>--</td>
</tr>
<tr>
<td>EYL (48 mg/mL)</td>
<td>1 5 NS/1401 lipid</td>
<td>--</td>
<td>14.97 (0.06)</td>
<td>0.397 (0.003)</td>
</tr>
<tr>
<td>DPPC/PG (unsat.)</td>
<td>1 SP-B18,25/2175 lipid</td>
<td>17.7 (1.2)</td>
<td>16.03 (0.03)</td>
<td>--</td>
</tr>
<tr>
<td>Tanaka lipids</td>
<td>1 SP-B18,25/2720 lipid</td>
<td>13.4 (1.0)</td>
<td>16.13 (0.04)</td>
<td>--</td>
</tr>
</tbody>
</table>

a Number of measurements = 4 for \(\tau_B, a_H, \) and S determinations. Values are means, with 1 SD in parentheses.
b Probe concentration was expressed either in μM (methanol or PBS), or probe/lipid ratio, determined from double-integration of ESR spectra (see Materials and methods). Spin-labeled N-terminal SP-B peptide (SP-B18,25) is defined in Figure 1. c \(\tau_B \), the rotational correlation time, was calculated from Equation 2. d S, the polarity-corrected order parameter, was calculated from Equation 3. e \(a_H \), the isotropic hyperfine coupling constant in Gauss, was calculated as shown in Figure 6A. f \(a_H \), the isotropic hyperfine coupling constant in Gauss was calculated from \(\xi = (T_1 + 2T_2) / 2 \), where \(T_1 \) and \(T_2 \) were measured as in Figure 8C and D.

(Fig. 7B), and Tanaka lipids (Fig. 7C). Similar to that noted for SP-B18,25-labeled SDS, the spin-labeled, N-terminal peptide of SP-B is relatively “weakly immobilized” for each of these lipids at 39°C. However, the \(\tau_B \)s in Table 3 indicated that there were variations in the motion of SP-B18,25 in each of the lipids, with the following order for reporter group mobility: Tanaka lipids ≈ DPPC + PG > SDS > EYL. Similar to that noted for SP-B18,25 with SDS (Fig. 7A), there is minimal indication of probe-probe interactions or spin-labeled peptide aggregation in the ESR spectra (Fig. 7B,C,D) for any of these lipids.

It is important to assess the vertical degree of penetration into the lipid (or micellar SDS) of the N-terminus reporter group for SP-B18,25. One approach is to examine the ESR spectral broadening observed with the addition of chromium oxalate to SP-B18,25 labeled lipids. With SP-B18,25-labeled EYL liposomes, chromium oxalate (50 mM) had no effect on the ESR spectrum (Fig. 8A,B). This indicates that the nitroxide reporter group must be embedded in the lipid bilayer to prevent direct contact with the negatively charged chromium oxalate. Similar experiments indicated no spectral broadening effects of chromium oxalate on SP-B18,25-labeled SDS, DPPC + PG, or Tanaka lipids (data not shown). For each of these lipids, the reporter group for SP-B18,25 must sufficiently penetrate into the lipid bilayer (or micelle) to avoid chromium oxalate.

Another method for evaluating penetration into the bilayer (or micelle) is to measure the \(a_H \) of the SP-B18,25 labeled lipids. Table 3 shows relatively high \(a_H \) values for SP-B18,25 in each lipid (i.e., 15.77 < \(a_H < 16.13 \) G); such high \(a_H \) values preclude deep penetration of the N-terminus into the hydrocarbon interior, but instead argue that the reporter group of SP-B18,25 resides near the polar headgroup region (Jost & Griffith, 1978). This is illustrated most clearly with SP-B18,25-labeled EYL liposomes. Seelig and Hasselbach (1971) have previously shown the existence of a vertical flexibility and polarity gradient in EYL liposomes. Their approach used a suite of stearic-acid (NS) spin probes as a reference “dipstick,” indicating a relatively rigid, polar surface and a fluid, hydrophobic interior. Comparison of the \(a_H \) values for NS-labeled EYL liposomes with that obtained for SP-B18,25 (Fig. 9) indicates that the reporter group of the spin-labeled surfactant peptide must lie closer to the polar headgroup than the S-C position of the S-NS probe. Interestingly, addition of chromium oxalate to S-NS labeled EYL did not affect the ESR spectrum (Fig. 8C,D), similar to that noted for SP-B18,25 (Fig. 8A,B).

Endogenous tryptophan fluorescence of SP-B18,25 in structure-promoting environments

Additional residue-specific information on the incorporation of SP-B18,25 into various structure-promoting environments may be obtained by measuring the endogenous fluorescence of the Trp-9. Because tryptophan emission is hydration dependent, the insertion of this aromatic residue into more hydrophobic environments (e.g., lipids) from a more polar, aqueous solvent may be monitored by a shift in the fluorescence maximum to lower wavelengths. When SP-B18,25 is suspended in PBS, there was a small “blue” shift to lower wavelengths (Table 4); this suggests that Trp-9 samples a slightly less polar environment for SP-B18,25 in PBS than when this peptide is in water. The “blue” shift in the fluorescence maximum for SP-B18,25 is most likely due to peptide aggregation in PBS. Previous CD studies of SP-B18,25 in PBS indicated a concentration-dependent change in structure typical of peptide-self association (Fan et al., 1991). This aggregation phenomenon is further indicated by the characteristic ESR spectral broadening for SP-B18,25 in PBS (see above), which suggested a significant population of peptide aggregates in solution.

Incorporation of SP-B18,25 in various structure-promoting environments produced more significant “blue” shifts for Trp-9 emission. For example, suspension of SP-B18,25 in methanol induced a “blue” shift of 15 nm for the fluorescence maxima (Table 4), consistent with Trp-9 being exposed to the more non-polar methanol molecules. Comparable “blue” shifts were also noted for this peptide in either SDS or EYL (Table 4). Here, the Trp-9 of SP-B18,25 is inserting sufficiently into either micellar SDS or lipidic EYL to sense an hydrophobic environment comparable to that observed in methanol. However, when the SP-B18,25 peptide was mixed with surfactant lipid dispersions of
Fig. 8. Effects of chromium oxalate (50 mM) on the ESR spectra of EYL lipid labeled with either SP-B_{1,25} or S-NS (S-NS) at 39 °C. A: ESR spectrum of SP-B_{1,25} labeled EYL lipid in PBS, at a peptide/lipid ratio of 1/357. B: ESR spectrum of SP-B_{1,25} labeled EYL lipid in PBS, at a peptide/lipid ratio of 1/357. C: ESR spectrum of 5-NS labeled EYL lipid in PBS, at a probe/lipid ratio of 1/1,401. D: ESR spectrum of 5-NS labeled EYL lipid in PBS, at a probe/lipid ratio of 1/1,401. 2T_{II} is the outer (2T_{II}) hyperfine splitting, 2T_{I} is the inner (2T_{I}) hyperfine splitting, determined from the spectrum corrected for the dilution effect of the chromium oxalate addition. In the ESR spectrum, the amplitude of the spectrum is corrected for the dilution effect of the chromium oxalate addition. The outer (2T_{I}) and inner (2T_{I}) hyperfine splittings are determined as shown in C and D, respectively; 2T_{II} was corrected by 0.8 Gauss (Curtain et al., 1987). x axis, end-to-end of spectra is equal to 90 Gauss. Probe concentrations were calculated from double-integration of the ESR spectra as described in the text.

DPPC:unsat. PG (7:3, wt%); or Tanaka lipids (DPPC/unsat. PG/palmitic acid: 66:22:9; wt%), there was a greater "blue" shift from a solution maximum of 356 nm to 333 nm, as well as a shoulder around 344 nm. These fluorescence spectra indicate that the Trp-9 of SP-B_{1,25} inserts into more hydrophobic lipid domains when the peptide is dispersed with zwitterionic/anionic lipid that is largely in the form of phospholipid bilayers.

To further examine the local environment of the Trp-9 of SP-B_{1,25} in various solvent systems and lipid dispersions, the effect of steady-state solute quenching with the iodide ion or acrylamide was determined. Potassium iodide (KI) is particularly useful for probing tryptophanes nearby positively charged sites of protein (Eftink, 1991). Concentrations of KI in the range 10–200 mM rapidly quenched the fluorescence of the Trp-9 of SP-B_{1,25} in all solutions and dispersions, suggesting solvent accessibility to this tryptophan residue. Examination of the quenching of Trp-9 by 10–200 mM acrylamide in solution and membrane-mimic systems (data not shown) also indicated that this residue was solvent accessible, even when in phospholipid bilayers.

Table 4. Tryptophan emission maxima and blue-shift for SP-B_{1,25} in structure-promoting environments and surfactant lipids

<table>
<thead>
<tr>
<th>Solvent/lipid</th>
<th>Wavelength max (nm)</th>
<th>Blue shift (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>353</td>
<td>3</td>
</tr>
<tr>
<td>Methanol</td>
<td>341</td>
<td>15</td>
</tr>
<tr>
<td>SDS</td>
<td>342</td>
<td>14</td>
</tr>
<tr>
<td>EYL</td>
<td>340</td>
<td>16</td>
</tr>
<tr>
<td>DPPC/PG (unsat.)</td>
<td>334</td>
<td>22</td>
</tr>
<tr>
<td>Tanaka lipids</td>
<td>333</td>
<td>23</td>
</tr>
</tbody>
</table>

^a SP-B_{1,25} concentration in PBS or methanol was 15 μM, and the respective SP-B_{1,25} lipid ratios for SDS, EYL, DPPC/PG (unsat.), and Tanaka lipids were 1/500, 1/300, 1/300, and 1/300.

^b Wavelength maxima reflect ±2 nm accuracy.

^c Blue shift is taken from the maximum wavelength value (356 nm) for the free tryptophan amino acid in aqueous medium at neutral pH.
dispersions where there was a significant blue shift. Although the Trp-9 of the N-terminal SP-B_{1-25} peptide samples a hydrophobic environment in the lipid headgroup (Jacobs & White, 1989; Jones & Gierasch, 1994), it is nonetheless sensitive to aqueous quenchers.

Discussion

Secondary conformation of the N-terminal SP-B_{1-25} peptide in structure-promoting environment and membrane mimics

In this study, FTIR measurements of SP-B_{1-25} indicated a dominant helical component in organic solvents (methanol), self-films, and lipid–peptide multilayers (Figs. 2, 3). These results are consistent with earlier CD analyses of SP-B_{1-25} in structure-promoting environments (Bruni et al., 1991; Fan et al., 1991) and complement the CD measurements of the peptide in methanol detailed in the present study. FTIR measurements also show a turn component and some β-sheet and disordered conformations for SP-B_{1-25} in systems that mimic surfactant peptides used in the treatment of respiratory distress syndrome.

The experimental protocol used here for localizing secondary conformations within SP-B_{1-25} was to similarly examine truncated peptides. FTIR measurements of the N-terminal segment containing the predicted β-turn tetrapeptide (SP-B_{1-9}) indicated that it had substantial absorbance at 1,667 cm\(^{-1}\) (Fig. 4A), typical of turn conformations, as well as contributions of helix (both 3_i and α) and some β-sheet (Table 2). Previous CD analysis of SP-B_{1-9} suggests that the turn component may assume type I β-turn conformers (Percec et al., 1993) in structure-promoting solvents, such as TFE and methanol. Although the present CD and FTIR studies of SP-B_{1-9} in methanol do not indicate a unique conformation for this shortened peptide, the major conformation (β-turn) found for the 1-9 peptide probably also occurs in the parent SP-B_{1-25}. CD and FTIR results presented here also indicate that the C-terminal segments of SP-B (i.e., SP-B_{21-25} or SP-B_{21-25}) principally assume helical conformations in methanol (Figs. 4, 5; Table 2). These findings support those of a recent proton 2D-NMR study of a synthetic SP-B fragment consisting of residues 11-25, confirming that leucine 14 to methionine 21 of SP-B_{1-25} exists as a flexible helical conformation in methanol and the membrane-mimic SDS (Kumar, 1994). Given the inherent uncertainties of working with truncated peptides that may fray at their unprotected N-terminal and C-terminal ends, however, additional residue-specific studies on the full-length SP-B_{1-25} peptide in surfactant lipid environments will be required to characterize more definitively the structure of these domains.

SP-B_{1-25} Topography in membrane-mimic systems

In addition to determining the secondary conformation of SP-B_{1-25}, an accurate topographical model for peptide insertion requires knowledge of the vertical penetration of key amino acid residues into the bilayer (or monolayer). One valuable experimental approach for obtaining such information is to record ESR spectra of peptides covalently labeled with paramagnetic reporter groups and incorporated into various environments (Altenbach & Hubbell, 1988; Gordon et al., 1992). ESR measurements indicated that SP-B_{1-25} principally distributes in PBS as aggregated peptide (Fig. 6B), analogous to that seen with the antimicrobial peptide cecropin AD in hexafluorosopropyl (10%) (Mchaourab et al., 1993). This self-association of SP-B_{1-25} is consistent with previous CD studies (Fan et al., 1991), which indicated that SP-B_{1-25} in PBS adopts a concentration-dependent, helical structure. Addition of a range of lipids to SP-B_{1-25} altered the ESR spectra dramatically (Fig. 7), indicative of quantitative incorporation of the spin-labeled peptide by the lipids. Both the relatively high polarity (Table 3) and the absence of chromium oxalate broadening (Fig. 8) demonstrate a position for the reporter group of SP-B_{1-25} immediately subjacent to the polar lipid headgroup.

Both endogenous Trp-9 fluorescence and susceptibility to aqueous fluorescent quenching agents (KI and acrylamide) suggest that, when SP-B_{1-25} is incorporated into lipid dispersions, this residue is located in the polar head group region of the liposome bilayer. Although both the reporter group of SP-B_{1-25} and the Trp-9 of SP-B_{1-25} associate with the lipid headgroup, the latter results suggest that the tryptophan resides in the polar region of lipid bilayer ensembles that is more exposed to the aqueous compartment (Griffith et al., 1974). These results complement an earlier immunologic study (Longo et al., 1992) of SP-B_{1-25} bound to liposomes that also provided information on the exposure of protein domains to the aqueous buffer. Antibodies raised to the amphipathic helical region encompassing SP-B residues Cys-8 to Gly-25 (Fan et al., 1991) showed that this sequence is accessible to the bulk aqueous solvent with SP-B_{1-25} bound to surfactant liposomes (Longo et al., 1992). In this context, it should be noted that our polarized FTIR measurements indicate that the helical axis (SP-B residues 8-25) inserts in surfactant lipids at an oblique angle with respect to the surface of the film (Table 1). These observations suggest that, at mole ratios of lipid to peptide of 100:1 or greater, the amphipathic helix probably locates in the polar lipid headgroup and is accessible to the aqueous buffer.

The above structural information may be used to develop a comprehensive model for SP-B_{1-25} interacting with lipids (Fig. 10). A refined structural model of SP-B_{1-25} in the absence of lipids was formulated initially by simulated annealing in vacuum using HYPERCHEM as described in Materials and methods. The refined structure was then saved in a Brookhaven file format and imported into BIOGRAPH. The proxyl spin label with the N→O· radical represented as N = O· was then modeled using the organic builder module of BIOGRAPH and attached to the SP-B_{1-25} peptide N-terminus. The ensemble was minimized and cycled through another molecular dynamics run by fixing the peptide coordinates and allowing the spin-label structure to relax. The helical segment molecular axis was then oriented to an angle of 45 degrees with respect to the plane of the amphipathic lipid monolayer, in agreement with oriented FTIR experiments (Table 1). Limited penetration of SP-B_{1-25} into the lipid monolayer is indicated by a polar headgroup location for both Trp-9 and the spin-labeled reporter on Phe-1, as determined from respective fluorescence and ESR studies.

The present structural studies suggest that the hydrophobicity of the N-terminal segment assists insertion of the peptide into lipid, whereas the amphipathic helix optimizes the orientation and charge specificity for interaction with specific lipids in bilayer-monolayer ensembles. Our results provide a preliminary basis for clarifying the molecular association of these types of protein sequences with surfactant lipids. More extensive inves-
tigations of the lipid–protein and protein–protein interactions for hydrophobic surfactant proteins, including full-length SP-B and SP-C, should permit a better understanding of defects (mutations) in surfactant function and optimization of lung surfactant in vivo.

Materials and methods

Materials

Peptide synthesis reagents including FMOC amino acid and coupling solvents were obtained from Applied Biosystems (Foster City, California). Phospholipids were from Avanti Polar lipids (Alabaster, Alabama) and palmitic acid was obtained from Nu-Chek-Prep (Elysian, Minnesota). The covalent spin label succinimidyl 2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylate and spin-labeled stearic acid derivatives were supplied by Molecular Probes (Eugene, Oregon). Chromium oxide (potassium trioxalochromate) was purchased from ICN-Pharmaceuticals (Plainview, New York). All organic solvents used for sample synthesis, purification, and preparation were HPLC grade or better.

Solid-phase peptide synthesis, purification, and characterization

The peptide was synthesized on a 0.25 mmol scale with an Applied Biosystems Model 431A peptide synthesizer or with an ABI Synergy synthesizer using FastMoc™ chemistry, using HBTu activation for coupling (Fields et al., 1991). A prederivatized p-benzyloxybenzyl alcohol resin (Applied Biosystems) with the C-terminal glycine was used for synthesis. Double couplings were used for residues 12–18, all other residues were single coupled. The truncated N-terminal SP-B segment, residues 1–9, was synthesized with a Rink amide MBHA resin (Calbiochem-Novabiochem, La Jolla, California) and was single coupled for all residues. Peptides representing SP-B residues 15–25 and 8–25 were N-acetylated on the resin with acetic anhydride-triethylamine in DMF.

Purification of crude peptide product was by reverse-phase HPLC with a Vydac C4-column (Vydac, Hesperia, California). The peptide was twice chromatographed using a 60-min linear gradient of 0–100% mobile phase at a flow rate of 3 mL/min to ensure that no unlabeled peptide coeluted with the spin-labeled product. The starting phase was water with 0.1% TFA, and the eluting phase was 100% acetonitrile containing 0.1% TFA. The elution of the material was monitored at 250 nm so to detect the spin-labeled peptide separation on the column. Purified peptide was dried by vacuum centrifugation. Peptides were twice freeze dried from 10 mM HCl solutions to remove acetate counters that interfere with FTIR spectral measurements. The molecular mass of the peptide was confirmed by fast atom bombardment mass spectroscopy.

CD spectroscopy

CD measurements were made with either a Jasco J720 spectropolarimeter (Easton, Maryland) or an AVIV 62DS spectropolarimeter (AVIV Associates, Lakewood, New Jersey). The Jasco 720 was fitted with a SCH-1 cell holder to minimize light scar-
tering artifacts, and the temperature of the sample was con-
trolled using the water-jacketed Jasco cuvette accessory coupled
to a Neslab constant temperature bath. The AVIV 62DS was fit-
ted with a thermoelectric temperature controller. Lipid–peptide
dispersions in 0.1-mm light path demountable cells were scanned
from 250 nm to 195 nm at a rate of 20 (or 10) nm/min and a
sample interval of 0.2 nm. The instrument was routinely cali-
brated with (+)-10-camphorsulfonic acid (1 mg/mL) and a
1-mm-pathlength cell (Johnson, 1990), and the ellipticity expressed
as the mean residue ellipticity, [θ]MRE (deg cm² dmol⁻¹). Peptide
sample concentrations were determined from the UV absorbance
at 280 nm using an extinction coefficient based on aromatic
amino acid residues (Gill & von Hippel, 1989) and by quantita-
tive amino acid analysis (UCLA Microsequencing Facility, Los
Angeles, California). The percentage of α-helix conformation
in the peptide was estimated using the formalism of Chen et al.
(1974). This approach assumes the maximum theoretical ellip-
ticity for a given peptide or protein at 222 nm may be derived
from the number of amino acid residues n, and the ellipticity
at 222 nm of an helix of infinite length described by Equation 1.

\[
\% \alpha\text{-helix} = \frac{[\theta]_{222}^{MRE}}{-39,500(1 - (2.57/n))} \text{ deg cm}^2 \text{ dmol}^{-1}
\]

(1)

FTIR spectroscopy

Infrared spectra were recorded at 38 °C on a Mattson Research
Series FTIR spectrometer with a DTGS detector. Peptides in
methanol solution were measured in CaF₂ cm-pathlength cells.
Spectra were averaged using 64 scans at a resolution of 2 cm⁻¹.
Peptide self-films were prepared by air-drying peptide solutions
(in methanol or hexafluoroisopropanol) onto 50 x 20 x 3 mm
45 degree ATR crystal (Spectra Tech, Stamford, Connecticut).
Lipid–peptide films were also air-dried onto the ATR crystal
with the following procedure. Peptides were first aliquoted from
methanol stock solution, and dried in a microfuge vial using a
vacuum concentrator. The dry peptide was then mixed with a
solution of isopropanol:water (9:1, v:v) containing the lipid, and
the mixture was applied to the ATR crystal to form multilayers.
The ATR crystal with the lipid–peptide film was sandwiched in a
chamber fabricated from black anodized aluminum (Matsu-
zaki et al., 1991), and mounted on the model 304 variable ATR
Spectra Tech with a Minco heater strip controlled with an
Omega (Stamford, Connecticut) temperature regulator. The
lipid–peptide sample was then hydrated for 2 h by passing ni-
trogen D₂O vapor through ports in the cell body. Spectra were
averaged from 64 scans at a gain of 4 and a spectral resolution
of 2 cm⁻¹. The IR range was typically scanned from 4,000 wave-
numbers (cm⁻¹) to 500 wavenumbers (cm⁻¹), which includes
both the conformations bands (Amide I, II, and 11) of the pep-
tide, as well as the lipid acyl chain stretching modes [CH₂CH₂,
\~2,850 wavenumbers (cm⁻¹)]. The orientation of the helical
axis of the peptide relative to the lipid multilayers was assessed
by placing a gold wire grid polarizer (Perkin-Elmer) in the in-
frared beam parallel and perpendicular to the ATR crystal sur-
face with oriented lipid–peptide film. Acyl chain orientations
for lipid–peptide films spread onto the germanium substrate were
estimated from polarization measurements of the CH₂ asym-
metric stretching frequency 2,850 cm⁻¹ (Okamura et al., 1990).
The dichroic ratio (RATR), an index of the mean acyl chain ori-
entation in the film, was determined by the ratio of the absorp-
tion of linearly polarized light parallel (Aₚ) and perpendicular
(Aₜ) to the plane of incidence (RATR = Aₚ/Aₜ).

The relative contribution of the various peptide conforma-
tions in the lipid film was estimated from analysis of the amide I
bands of the sample. The spectrum of the lipid film without pep-
tide was subtracted from that of samples with peptide associ-
ated with lipid. The amounts of helix, turn, β-structure, and
disordered conformations was determined by Fourier self-
deconvolution for band narrowing and area calculations of com-
ponent peaks calculated with curve fitting software supplied by
Mattson and based on procedures described by Kauppinen et al.

ESR spectrometry

The N-terminus of SP-B₁₋₂₅ was spin labeled (i.e., SP-B₁₋₂₅;
Fig. 1) by de-FMOCing the N-terminus residue while the peptide
was still on the resin, using 20% piperidine in N-methylpyrrolidone,
followed by dimethylformamide and dichloromethane washes.
The peptide was then labeled with excess succinimidyl 2,2,5,5,
tetramethyl 3-pyridine spin label in acetonitrile/bicarbonate buffer
(10 mM, pH 8.3) for 2 h. SP-B₁₋₂₅ was isolated with reverse-phase HPLC,
and the purity assessed with FAB mass spectroscopy and quantita-
tive amino acid analysis.

Spin-labeled SP-B₁₋₂₅ stock solutions were prepared by dis-
solving SP-B₁₋₂₅ in 100% methanol at 2.73 x 10⁻⁴ mol/L. Before
lipid addition to SP-B₁₋₂₅, small volumes of the peptide
probe solution were added to plastic vials and dried by centri-
fuging under vacuum. Aliquots (100 µL) of PBS, pH 7.4, or lip-
ids suspended in PBS were then added and hand- vortexed for
several minutes at room temperature. Spin-labeled samples
(25-µL aliquots) were drawn into 50-µL capillary pipettes that
were subsequently heat-sealed at one end. The sealed capillaries
were then inserted into a special holder (Gaffney, 1974; Curt-
tain et al., 1987), and this assembly was then introduced into the
Demag of the variable temperature regulator of the ESR
spectrometer.

The extent of probe incorporation was tested by comparing
the amount of probe added to the lipid solution (i.e., mol
probe/mol lipid "wt") with the paramagnetic spins observed in
the microwave cavity (i.e., mol probe/mol lipid "spins"). Spins were
calculated (Gordon et al., 1985; Curtain et al., 1987) from
the ratio of the double-integrated spectrum of probe-labeled
agent solution with that of the Varian Strong-Pitch [0.1% pitch,
with 3 x 10⁻⁵ spins in 5.5 mm]. Similar calculations were
performed to calculate the % SP-B₁₋₂₅ uptake in methanol and
PBS solutions.

The ESR spectra were recorded with a Varian E-104A spec-
trometer equipped with a variable temperature accessory. For
computer analysis, ESR spectra were first scanned with a
Hewlett-Packard ScanJet IIC at 100 dpi, and then digitized into
2,300 points with UNGRAPH (Biosoft, Oxford, UK). Com-
puter manipulations of the experimental spectra, such as signal
averaging and integrations, were performed using SpectraCalc
Version 2.23 (Galactic Industries Corp., Salem New Hampshire).

**Evaluation of the flexibility and polarity
of lipid-incorporated SP-B₁₋₂₅ or NS probes**

Two distinct motional regimes were noted for the probe mol-
ecules used here. For SP-B₁₋₂₅ in 100% methanol, or with lip-
ids suspended in PBS, pH 7.4, the motion of the probe attached to SP-B,23 is nearly isotropic. A rotational correlation time (τ_R) may be calculated that provides an empirical parameter sensitive to motion in the region probed by the spin label (Keith et al., 1974):

$$\tau_R = 6.5 \times 10^{-10} \cdot \Delta H_0 [(h_2/h_{-1})^{1/2} - 1]$$

(2)

where ΔH_0 is equal to the peak-to-peak distance of the central band (Fig. 6A), and h_2 and h_{-1} are measured as in Figure 6A. Equation 2 is valid for $\tau_R \approx 10^{-10}$ s. The α_N in Gauss is sensitive to the polarity of the environment of the probe and is measured as shown in Figure 6A; increases in α_N indicate a more polar environment.

For motional ranges where the spin-labeled, nitroxide stearic acid probes (NS) exhibit anisotropic rotation and restricted flexibility (e.g., Fig. 8C,D), the order parameter S may be used to assess flexibility:

$$S = \frac{(T_1 - T_2)}{(T_{2\alpha} - T_{2\alpha})} \cdot \frac{(\sigma_1)}{(\sigma_2)}$$

(3)

where T_1 and T_2 for the incorporated spin probe are two phenomenonic hyperfine splitting parameters in the effective Hamiltonian theory (Hubbell & McConnell, 1971), and can be determined experimentally as shown in Figure 8C and D. The other two hyperfine splitting parameters, $T_{2\alpha}$ and $T_{2\alpha}$, in Equation 3 are the principal elements of the real hyperfine splitting tensor (T) in the spin Hamiltonian of the probe system, which can be measured from corresponding single-crystal ESR spectra. According to earlier review (Gaffney, 1974; Curtin et al., 1987), ($T_{2\alpha}$, $T_{2\alpha}$) is equal to (6.1, 32.4) G and σ_1 and σ_2 are the isotropic hyperfine coupling constants for the probe given by $\alpha'_N = \frac{1}{2} \cdot (T_1 + T_2)$ G and $\alpha''_N = \frac{1}{2} \cdot (T_{2\alpha} + T_{2\alpha})$ G, respectively. For the same solvent polarity, α'_N and α''_N become identical because of the general principle for tensor transformations in quantum mechanics. Increases in α'_N indicate a more polar environment for the probe.

If experimentally determined low probe concentrations are used (Sauerheber et al., 1977), S is sensitive to the flexibility of the incorporated probe. These order parameters may assume values between 0 and 1, with the extremes indicating that the probe samples fluid and motionally restricted environments, respectively. S, which requires both splittings, corrects for small polarity differences between the solvent environment and the reference crystal.

Tryptophan fluorescence spectroscopy

Steady-state fluorescence spectra of the tryptophan containing SP-B sequence in lipid–peptide dispersions were made using a Perkin-Elmer LS-5B Luminescence spectrometer at 38 °C. The sample was measured using a front surface fluorescence-luminescence accessory (Perkin-Elmer) that minimizes dispersion light scattering artifacts (Waring et al., 1989).

Molecular modeling

The amino-terminal peptide of SP-B (SP-B,23) was modeled with HYPERCHEM software version 3.0 (Autocad, Sausalito, California) on either a Dell 90 MHz computer or a Silicon–Graphic Iris Indigo workstation (Drew-RCMI Epistat core facility). Energy minimizations and molecular dynamics were performed using the AMBER force field within the HYPERCHEM software environment. Torsional angles derived from energy minimizations and dynamics of the SP-B,23 were obtained using Chem-Plus™ (Hypercube, Inc., Waterloo, Ontario) extension of HYPERCHEM. Type III β-turn (20 helix) dihedrals were used for residues 1–7, whereas an α-helical motif was applied to residues 8–21. All other residue torsionals were considered to be random. The structure was then energy minimized by Polak–Ribiere conjugate gradient minimization to an apparent minimum (0.1 kcal/mol). The structure was then relaxed by simulated annealing in vacuo. The temperature was increased from 300 to 900 K using a step of 5 fs for 30 ps. The simulated heating was then followed by 30 ps of molecular dynamics at 900 K and cooled to 300 K for 50 ps with a time step of 5 fs. The relaxed structure was then optimized by conjugate gradient minimization. The refined structure had dihedrals that corresponded to helix (−130 ≤ φ ≤ 10; −90 ≤ ψ ≤ −10) for residues 5–19; residues 3–4, 20–22 had torsional angles more characteristic of β-sheet (−180 ≤ φ ≤ −50; 80 ≤ ψ ≤ 180), whereas all other dihedrals belonged to no specific conformational class (i.e., random). The refined structure was then saved in a Brookhaven file format and imported into BIORIF versi 3.2.1 (Molecular Simulations, Waltham, Massachusetts) for final presentation in the lipid monolayer, assembled from the BIORIF lipid library.

Acknowledgments

We thank Dr. Larry Vickery (UC Irvine) for use of the Jasco J-720 CD spectrometer and Dr. James Bowie (UCLA) for use of the AVIV 62DS spectropolarimeter. We acknowledge Conrado Savilla III and John Rac for their help with the synthesis and cleavage of the spin-labeled SP-B peptides. Special thanks to Dr. Maria Mas for access to the Beckman City of Hope Molecular Modeling Facility, and to Dr. Mark Sherman for assistance in modeling the peptide–lipid ensemble in the BIORIF environment. We are grateful to Dr. Tim Wiedman for sharing prepublication, residue-specific 2D NMR data on a synthetic peptide comprising the N-terminal helical segment of SP-B. We also thank the reviewers, Mike Lipp, and Ka Yee Lee for their helpful comments on the manuscript. This study was supported by NIH grant HL 40666 (H.W.T., A.W., L.G.), HL 55534 and RCMI G12 RR 3026 (A.W., L.G.), and HL 51177-02 (J.J.Z.). The ABI 431A peptide synthesizer was acquired by an NIH small equipment grant GM 50483 (A.W., L.G.).

References

Curtis T, Johansson J, Persson P, Eklund A, Robertson B, Lowenadler B, Jörnvall H. 1990. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated residues whereas SP-B lacks...
The N-terminal segment of surfactant protein B

covalently linked fatty acid groups. *Proc Natl Acad Sci USA* 87: 2985-2989.

