14
Design of Experiments with Several Factors

Reading Assignment: pp. 539-544, 559-564
• Suppose that an important variable Y may depend on several independent variables, X_1, X_2, \ldots, X_n.

• **Key Issues:**
 - How do we determine which $\{X_i\}$ are most important?
 - How do we characterize their relative effects?

• **Important applications:**
 - Process development
 - Process improvement
14-1 Introduction

• An **experiment** is a test or series of tests.

• The **design** of an experiment plays a major role in the eventual solution of the problem.

• **Definitions for the experiments:**
 - **Response Variable:** The dependent variable Y
 - **Factors:** The independent variables being considered, the $\{X_i\}$.
 - **Levels:** Values of the factors being considered

• In a **factorial experimental design**, experimental trials (or runs) are performed at all combinations of the factor levels.
Question:
Why not simply vary one factor at a time and evaluate its effect on the response variable?

Answer:
This intuitive strategy may give very poor results.

Example: Batch reactor yield:
 Response variable: Yield (%)
 Factors: Reaction time and reaction temperature
Example: Batch Reactor Yield

Two factors: Reaction time and temperature

Note: Maximum yield occurs at $t = 1.7$ hr.

Figure 14-7 Yield versus reaction time with temperature constant at 155º F.
Example: Batch Reactor Yield

Figure 14-8 Yield versus temperature with reaction time constant at 1.7 hours.
Contour Plot for Batch Reactor Example

Contours represent constant values of yield in %.

Figure 14-9
Optimization experiment using the one-factor-at-a-time method.
14-2 Factorial Experiments

Definition

By a factorial experiment we mean that in each complete trial or replicate of the experiment all possible combinations of the levels of the factors are investigated.

<table>
<thead>
<tr>
<th>Table 14-1</th>
<th>A Factorial Experiment with Two Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A</td>
<td>Factor B</td>
</tr>
<tr>
<td></td>
<td>B_{low}</td>
</tr>
<tr>
<td>A_{low}</td>
<td>10</td>
</tr>
<tr>
<td>A_{high}</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 14-2</th>
<th>A Factorial Experiment with Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A</td>
<td>Factor B</td>
</tr>
<tr>
<td></td>
<td>B_{low}</td>
</tr>
<tr>
<td>A_{low}</td>
<td>10</td>
</tr>
<tr>
<td>A_{high}</td>
<td>30</td>
</tr>
</tbody>
</table>
Figure 14-3 Factorial Experiment, no interaction.
14-2 Factorial Experiments

Figure 14-4 Factorial Experiment, with interaction.
14-5. 2^k Factorial Designs:
k factors and 2 levels for each factor.

Initially, we will consider $k = 2$ (a 2^2 design) with:

Factors: A and B. **Levels**: (+) and (-)

Figure 14-15 The 2^2 factorial design.
2² Factorial Designs

The **main effect** of a factor is estimated by evaluating the corresponding values of response variable, \(y \). Let:

\[
A = \bar{y}_{A+} - \bar{y}_{A-} = \frac{a + ab}{2n} - \frac{b + (1)}{2n} = \frac{1}{2n} [a + ab - b - (1)]
\]

(14-11)
The main effect of a factor B is estimated by

\[B = \bar{y}_{B+} - \bar{y}_{B-} \]

\[= \frac{b + ab}{2n} - \frac{a + (1)}{2n} \]

\[= \frac{1}{2n} [b + ab - a - (1)] \]

(14-12)
The AB interaction effect is estimated by

\[
AB = \frac{ab + (1)}{2n} - \frac{a + b}{2n} - \frac{1}{2n} [ab + (1) - a - b]
\]

(14-13)
14-5 2^k Factorial Designs

14-5.1 2² Design

The quantities in brackets in Equations 14-11, 14-12, and 14-13 are called **contrasts**. For example, the A contrast is

\[
\text{Contrast}_A = a + ab - b - (1)
\]

<table>
<thead>
<tr>
<th>Treatment Combination</th>
<th>Factorial Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>(1)</td>
<td>+</td>
</tr>
<tr>
<td>a</td>
<td>+</td>
</tr>
<tr>
<td>b</td>
<td>+</td>
</tr>
<tr>
<td>ab</td>
<td>+</td>
</tr>
</tbody>
</table>
14-5 2^k Factorial Designs

14-5.1 2^2 Design

Contrasts are used in calculating both the effect estimates and the sums of squares for A, B, and the AB interaction. The sums of squares formulas are

\[
SS_A = \frac{[a + ab - b - (1)]^2}{4n}
\]

\[
SS_B = \frac{[b + ab - a - (1)]^2}{4n}
\]

\[
SS_{AB} = \frac{[ab + (1) - a - b]^2}{4n}
\]

(14-14)
ANOVA Table for Example 14-3

Table 14-14 Analysis of Variance for the Epitaxial Process Experiment

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
<th>f_0</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (deposition time)</td>
<td>2.7956</td>
<td>1</td>
<td>2.7956</td>
<td>134.40</td>
<td>7.07 E-8</td>
</tr>
<tr>
<td>B (arsenic flow)</td>
<td>0.0181</td>
<td>1</td>
<td>0.0181</td>
<td>0.87</td>
<td>0.38</td>
</tr>
<tr>
<td>AB</td>
<td>0.0040</td>
<td>1</td>
<td>0.0040</td>
<td>0.19</td>
<td>0.67</td>
</tr>
<tr>
<td>Error</td>
<td>0.2495</td>
<td>12</td>
<td>0.0208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.0672</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

The f_0 value for effect i is calculated as:

$$f_{0i} = \frac{MS_i}{MS_E}$$

SS_E is calculated by subtracting all of the individual SS_i from SS_T.
14-5 2^k Factorial Designs

14-5.4 Additional Center Points to a 2^k Design

A potential concern in the use of two-level factorial designs is the assumption of the linearity in the factor effect. Adding center points to the 2^k design will provide protection against curvature as well as allow an independent estimate of error to be obtained.
14-5 2^k Factorial Designs

14-5.2 2^k Design for k ≥ 3 Factors

Figure 14-20 The 2^3 design.
Figure 14-21 Geometric presentation of contrasts corresponding to the main effects and interaction in the 2^3 design. (a) Main effects. (b) Two-factor interactions. (c) Three-factor interaction.