Course Objective

> Review and practice fundamental chemical engineering concepts (mass, energy, and momentum transport coupled with heterogeneous and homogeneous reactions and thermodynamics).
> Apply these concepts to problems in unit operations for fabrication of integrated circuits and electronic and optoelectronic devices.
$>$ Learn about the field of microelectronics processing, its history, and its future.

Transistor and Integrated Circuits: History

> 1906: Lee DeForest developed the triode in vacuum tube that could amplify signals.

- "Killer Application" = transcontinental telephone service.
- It worked but was unreliable, used and produced too much power.
$>$ 1915: Coast-to-coast telephone system.
$>$ 1920-30: Quantum mechanics
> 1930s: Mervin Kelly, Bell Labs Director of Research envisioned something made of semiconductors to replace the vacuum tube.
> 1940: Russel Ohl discovered p-n junction.
> 1945: Bill Shockley assembles solid state research team at Bell Labs
$>$ 1946: ENIAC, the $1^{\text {st }}$ digital computer, uses 18,000 vacuum tubes

Transistor and Integrated Circuits: History

1947: Christmas Eve; Bill Shockley, John Bardeen \& Walter Brattain invented the point contact transistor
$\because \quad$ DATE Nee 24194
caseno. $38139-7$

of 18 on guates. Vprians preple
untruiced etid tect amed lextimed

R. Bown: Zum. N, T7. Mave achitud
in cotimg up the curindt and.
the duriautiation racencd on
the aftamina P P Dece 2819.47

Deas 241947
Thins maming A. TP Mnowe changid

http://www.pbs.org/transistor/science/index.html

Transistor and Integrated Circuits: History

> 1948: Shockley invents the junction transistor
> 1952: Dummer suggested that "electronic equipment can be manufactured in solid block without connecting wires"
> 1953: First commercial application of transistors: hearing aids
> 1950s: Czochralski growth and Bridgman growth techniques invented
> 1954: First transistor radio; first fully transistorized computer
> 1954: Texas instruments makes first Si transistor
> 1956: Nobel Prize in Physics to Bill Shockley, John Bardeen \& Walter Brattain for inventing the transistor
> 1957: Shockley leaves Bell labs and establishes Shockley semiconductor in Palo Alto, CA
> 1958: "Traitorous Eight" leave Shockley Semiconductor to form Fairchild Semiconductor and Intel (Robert Noyce and Gordon Moore)
> 1958: Bill Pfan invented purification by zone melting

The First Integrated Circuit

> 1958: Jack Kilby at Texas Instruments and Robert Noyce at Fairchild invent the integrated circuit.

An integrated circuit is a collection of electronic devices such as transistors, diodes, capacitors, and resistors in a small($\sim 1-20 \mathrm{~cm}^{2}$, thin ($0.5-1 \mathrm{~mm}$) semiconducting substrate such as Si or GaAs. The devices are interconnected using metal lines ("wires") to perform a variety of functions (microprocessors) or to store information (memory).

Intel and the First Microprocessor

> 1965: Andy Grove and Bruce Deal study Silicon Oxidation
> 1968: First use of plasmas in integrated circuit fabrication
> 1968: Robert Noyce, Gordon Moore and Andy Grove leave Fairchild to cofound Intel (short for integrated electronics). Grove later becomes the CEO.
> 1971: A Japanese company named BUSICOM hired Intel to build a circuit to run its calculators.
> 1971: In response to BUSICOM Ted Hof invents the first microprocessor at Intel 4004. $1 / 8^{\prime \prime} \times 1 / 16^{\prime \prime}$ with 2300 transistors on silicon. 4004 was as powerful as ENIAC; ENIAC weighed 30 tons and had 18,000 vacuum tubes.
> 1971: A bad business decision; BUSICOM, unsatisfied with slow progress, asks for their investment refund. Intel gives their $\$ 40,000$ back and retain all the rights to the microprocessor.

The First Microprocessor: Intel 4004

$>$ The 4-bit Intel 4004 ran at a clock speed of 108 kHz and contained 2300 transistors. The 4004 addressed up to 1 Kb of program memory and up to 4 Kb of data memory.

Moore's law

Transistor Count (K)

Moore's law

transistors

Memory

Decreasing transistor size

Microprocessor "Technology"

Silicon Process	1.5μ	1.0μ	0.8μ	0.6μ	0.35μ	0.25μ
Technology						
Intel $386{ }^{\text {TM }} \mathrm{DX}$						
Processor						

Microelectronics Manufacturing: Overview

$>$ ICs are produced layer by layer on the top few microns $\left(10^{-6} \mathrm{~m}\right)$ of $\mathrm{a} \sim 0.5 \mathrm{~mm}$ thick substrate using a series of processing steps.
$>$ In 99% of the ICs the substrate is Si. Glass (for displays) and GaAs are the next common substrates.

Unit Operations of Microelectronics Manufacturing

$>$ Crystal Growth
$>$ Oxidation
$>$ Chemical Vapor Deposition (Thermal CVD)
$>$ Plasma Enhanced Chemical Vapor Deposition (PECVD)
$>$ Epitaxy
$>$ Lithography
> Diffusion
$>$ Ion Implantation
$>$ Plasma Etching
$>$ Evaporation
$>$ Sputtering
$>$ Wet Etching/Cleaning
$>$ Electrochemical Deposition
$>$ Chemical-Mechanical Polishing

Example: Voltage Divider

Voltage Divider "Technology"

Pattern Transfer Using Lithography

(1) Starting waler with layer to be patterned

(3) Bake the resist to set its dissolution properties

(2) Coat with photoresist

(4) Expose resist by shining light through a photomask

(5) Immerse exposed wafer in developer

(6) Etch the film

