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Adaptive Nonlinear Control of
a pH Neutralization Process

Michael A. Henson, Member, IEEE, and Dale E. Seborg

Abstract—An adaptive nonlinear control strategy for a bench-
scale pH neutralization system is developed and experimentally
evaluated. The pH process exhibits severe nonlinear and time-
varying behavior and therefore cannot be adequately controlled
with a conventional PI controller. The nonlinear controller design
is based on a modified input-output linearization approach which
accounts for the implicit output equation in the reaction invariant
model. Because the reaction invariants cannot be measured on-
line and the linearized system is unobservable, a nonlinear output
feedback controller is developed by combining the input—output
linearizing controller with a reduced-order, open-loop observer.
The adaptive nonlinear control strategy is obtained by aug-
menting the non-adaptive controller with an indirect parameter
estimation scheme which accounts for unmeasured buffering
changes. Experimental tests demonstrate the superior perfor-
mance of the adaptive nonlinear controller as compared to a
non-adaptive nonlinear controller and conventional PI controller.

I. INTRODUCTION

HE CONTROL of pH is common in the chemical process
and biotechnological industries. For instance, the pH
of effluent streams from wastewater treatment plants must
be maintained within stringent environmental limits [1], [2].
Tight control of pH is also critical in the production of
pharmaceuticals [3]. However, high performance and robust
pH control is often difficult to achieve due to nonlinear
and time-varying process characteristics. These processes can
exhibit severe static nonlinear behavior because the process
gain can vary several orders of magnitude over a modest
range of pH values. Moreover, the titration curve may be time
varying due to unmeasured changes in the buffering capacity.
As a result of these characteristics, several adaptive nonlin-
ear control strategies [4]-[10] have been proposed for pH neu-
tralization processes. However, these pH control techniques
suffer from one or more of the following shortcomings: (i) a
process model with linear dynamics is employed; (ii) process
nonlinearities are incompletely compensated; (iii) slowly time
varying behavior is assumed; (iv) the control actions are
generated using iterative calculations which may not converge;
and (v) the approach is evaluated using an unbuffered pH
system which does not account for the time-varying nature
of industrial processes. Hence, most pH control techniques
do not adequately address the nonlinear and time-varying
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characteristics of pH processes. In this paper, a new adaptive
nonlinear control strategy which addresses these shortcomings
is developed.

In a previous paper [11], we developed adaptive, non-
linear control strategies for a bench-scale pH neutralization
process. The nonlinear controller was designed by applying
input—output linearization theory to a reaction invariant model
of the system [4], [12]. Although reaction invariants usu-
ally cannot be measured on-line, they were assumed to be
available for feedback control. Because the model exhibits
significant nonlinear and time-varying behavior, a conven-
tional PI controller and non-adaptive version of the nonlinear
controller yield unacceptable performance. Three adaptive
nonlinear controllers were developed by combining the in-
put—output linearizing controller with nonlinear parameter
estimators which account for unmeasured buffering changes.
The direct approach of Sastry and Isidori [13] was shown to
have poor setpoint tracking characteristics and high sensitivity
to sampling. The indirect technique of Teel ez al. [14] provides
excellent performance but cannot be employed if the reaction
invariants are unmeasured. A new indirect adaptive control
approach was proposed which provides outstanding setpoint
tracking and disturbance rejection. Moreover, the new method
is suitable for experimental application where the reaction
invariants cannot be measured and sampling is required.

In this paper, an implementable version of the indirect
adaptive nonlinear control strategy proposed by Henson and
Seborg [11] is developed and experimentally evaluated. As
in the previous study, the adaptive nonlinear controller is
designed by combining an input—output linearizing controller
with a new indirect parameter estimator. Because the system
is unobservable, an implementable controller is obtained by
augmenting the state feedback controller with a reduced-order,
open-loop observer which provide on-line estimates of the
reaction invariants. Non-adaptive and adaptive versions of the
nonlinear output feedback controller are compared to a con-
ventional PI controller using a bench-scale pH neutralization
system at UCSB [15].

II. THE REACTION INVARIANT MODEL

A simplified schematic diagram of the UCSB bench-scale
pH neutralization system is shown in Fig. 1. The process
consists of an acid stream (g;), buffer stream (g2) and base
stream (g3) that are mixed in tank 1. Prior to mixing, the
acid stream enters tank 2 which introduces additional flow
dynamics. The acid and base flow rates are regulated with
flow control valves, while the buffer flow rate is controlled

1063-6536/94$04.00 © 1994 IEEE
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Fig. 1. The UCSB pH neutralization system,

manually with a rotameter. The tank level (4) and effluent pH
(pH) are measured variables. Because the pH probe is located
downstream from tank 1, a time delay () is introduced in the
pH measurement. Dilute acid and base streams are employed
for safety and environmental reasons. The process is interfaced
to an IBM PC/AT personal computer that is used for process
monitoring and control. In this study, the pH is controlled by
manipulating the base flow rate, and the acid and buffer flow
rates are considered to be unmeasured disturbances. In the
adaptive nonlinear control strategy presented in Section III,
the buffer flow rate is estimated from input—output data. More
detailed descriptions of the process and the computer control
system are presented elsewhere [15], [16].

The dynamic model of the pH neutralization system shown
in Fig. 1 is derived using conservation equations and equilib-
rium relations. The model also includes valve and transmitter
dynamics as well as hydraulic relationships for the tank outlet
flows. Modeling assumptions include perfect mixing, constant
density, and complete solubility of the ions involved. The
model is presented briefly below; more detailed derivations
are available elsewhere [15], [16].

The chemical reactions for the system are:

H,CO; « HCO; +HY 1)
HCO3 < CO37 + H* ()]
H,0 - OH™ + H*. €))

The corresponding equilibrium constants are:

_ [HCOZ][H]
Kot = TRc0, @
_ [CO5][HT]
Ka2 = ﬁéoﬁ (5)
K, = [H*][OH]. (6)

The chemical equilibria is modeled by defining two reaction
invariants [4], [12] for each inlet stream (i € [1, 4]):
W, = [H*]; — [OH7); — [HCO3]; — 2[CO5): (D)

The invariant W, is a charge related quantity, while W,
represents the concentration of the CO3 ion. Unlike pH, these
invariants are conserved quantities. The pH can be determined
from W, and W, using the following relations [16]:

I}({+ + 2K[H+K]2 2 Ky  opy
W% Kukyg T Wet =7 —[H]=0 9
1+ fy + B (H]

pH = ~log([H™]). (10)

The dynamic model of the neutralization process is developed
as follows. A mass balance on tank 2 yields,

dh
Ar—2 = g1 — qre (11)

dt
where h and Aj are the level and cross-sectional area of tank
2, respectively. The exit flow rate ¢;. is modeled with the
following flow-head relation,

qie = Cyp1h3® (12)

where C,; is a constant valve coefficient. An overall mass
balance on tank 1 yields,
dh
At =gt g2+ 43— s (13)
where A; is the cross-sectional area of tank 1. The exit flow
rate g4 is modeled as,

94 = Cua(h1 +2)" (14)

where C,4 is a constant valve coefficient, n is a constant valve
exponent, and z is the vertical distance between the bottom of
tank 1 and the outlet for g4. By combining mass balances on
each of the ionic species in the system, the following differen-
tial equations for the effluent reaction invariants (W4, Wy4)
can be derived [16]:

dW,
Arhy i 2 = QIE(Wal - Wa4)
+ g2(Waz — Way) + gs(Wa3 — Was) (15)
dW,
A1h17b4 = q1e(We1 — Wia)

+ g2(Wez — Wia) + g3(Wez — Wia). (16)

The pH and level transmitters are modeled as first order
transfer functions with unity gain and time constants TpH and
Th, respectively. The desired flow rates ¢; and g3 serve as
setpoints for cascade flow control loops with sampling period
At. =1 s which are modeled as first-order transfer functions
with unity gain and time constant 7,,. The sampling period for
pH measurement and control is At = 15 s. Nominal model
parameters and operating conditions are given in Table 1.

III. ADAPTIVE NONLINEAR CONTROLLER DESIGN

In this section, an adaptive nonlinear control strategy for the
UCSB pH neutralization system is described and simulation
results are presented. As demonstrated by Henson {17] and
the experimental results in Section IV, a conventional PI
controller must be tuned very conservatively to maintain
stability for high gain conditions and very sluggish control is
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TABLE 1
NOMINAL OPERATING CONDITIONS FOR THE PH SYSTEM
Jq ;1 = 0.003 M HNO; 4, = 16.6 ml/s
[4,] = 0.03 M NaHCO4 4y = 0.55 ml/s
193} = 0.003 M NaOH. Uy = 15.6 ml/s
0.0005 M NaHCQO, Yy, = 16.6 mls
Ap=207em? Gy =32.8mls
Ay =42em? W, = 300x 107 M
7=115cm Wy =0M
n=0.607 Woa=-003M
Kg=447x10 7 Wi = 0.03M
Ko=35.62x 101 W,3=-305 x103m
Ke=100x10 M Wi =S00x 10 3M
A= 1505 hy = 14.0cm
A= LOs hy =30 cm
Tpp = 15.0s W= 432x107M
T =150s Wiy =528 x 1074 M
T, =60s pH=7.0
8=100%

therefore obtained for other operating regimes. Although the
non-adaptive nonlinear controller presented accounts for the
nonlinear static behavior, it does not explicitly address time-
varying process behavior caused by unmeasured buffering
changes. Superior performance for buffering variations is
obtained by treating the buffer flow rate as a unknown,
time-varying parameter which is updated with a recursive
least-squares algorithm. Experimental resuits for the non-
adaptive and adaptive nonlinear controllers are presented in
Section V.

A. Non-Adaptive Nonlinear Control

The nonlinear controller design is based on a slightly
simplified version of the simulation model described in Section
II. In particular, the dynamics of the pH and level transmitters
and the flow dynamics of tank 2 are neglected. With these
simplifications, a nonlinear state-space model of the process
can be obtained by defining the state variables, disturbance,
input, and output as,

x £ [VV(M Wiy }Irl]T., d = g2,

Uq £ q3, Y = [)H

a7

where u, is the actual value of the base flow rate which differs
from the base flow rate calculated by the controller (u.) due
to the valve dynamics. Using these definitions, the process
model has the form,

(18)
(19

&= flx) + glw)u, + pla)d
clr,y) =0

where

flz) = _A(f;;;,(W“ — 1) ﬁ(Wm — 23)

1 T

';1—((11 = Cpa(hy + 2)”)J (20)

1

- 1, 117

g(.’l:) = _AILL‘;; (Wag —‘J;l) A].’L'3 (W[ﬁ - .'.1?2) A_1:| (21)
o 1 e

) = | i Woa = 20) Wi =) | 22

e(r,y) =z + 10¥714 — 107V
1+2x 10v—rK:
1+ 10PE1~y 4 1(0v—PK: "

+ T2 (23)
The valve dynamics are modeled by a first-order differential
equation with unity gain and time constant 7,:

1 1

Ug = ——Uq + —Ue.
v Ty

(24)

The nonlinear controller design is based on a modified in-
put—output linearization approach [11] which accounts for the
implicit output equation in (23). Taking the time derivative of
(23) using (18) and rearranging yields,

y= ~(:.;l(1'. e (W) f(x) + g(x)u, + p(x)d] (25)

where ((26) and (27) are at the bottom of the page.)

Because ¢ ' (2, y)c.(y)g(x) # 0 for all z and y of interest,
the model has relative degree » = 1 and standard input-output
linearization techniques [18], [19] can be applied to (25).
The nonlinear controller is designed by solving the following
equation for wg:

—c (@ e ()f () + g(@)ua + pla)d] = 0. (28)
The “new” input » is chosen as,
t
v=—2"ty4e? / (ysp — y)dr (29)
Jo

where ysp, is the pH setpoint. Hence, the input—output lineariz-
ing controller can be written as ((30) at the bottom of the next
page) where 0 < £ < oc is the controller tuning parameter.
If there is no plant/model mismatch, (30) yields the following
closed-loop transfer function (CLTF):

y(s) 1

yls) (s + )2 3D

The parameter ¢ = 1 min is chosen to provide a compromise
between performance and robustness to modeling errors. This
value of ¢ is approximately one-half the time constant for the
open-loop responses shown in Section IV.

=1

1+ 10PK1-y  10v—pK>

142 x 10v—rK: ]T

10PK -y 4 10y-PK2 ¢ 4{10}:1&'1—1/}{1097111(2}

(26)

cy(e,y) = (In10) [1[)-‘/—14 +107Y + 4

. - . 27)
{1+ 10PK 1~y 4 10y—PK:)? } (
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In the experimental system, the pH (y) and tank 1 level
(z3) are measured but the reaction invariants (z; and z»)
must be estimated. Below we show that it is not possible to
design a closed-loop observer because the pH process model
is unobservable. Local nonlinear observability can be analyzed
by determining the rank of a matrix that is the nonlinear
generalization of the observability matrix used in linear system
theory [18]. However, this approach requires the computation
of a set of Lie derivatives that are very complicated for the pH
neutralization model. Because linear observability is obviously
a necessary condition for nonlinear observability, a linearized
model can be used for initial observability analysis. If the
linear model is unobservable, a nonlinear closed-loop observer
does not exist and there is no reason to proceed with the
nonlinear analysis.

For the pH model, the linearized model at any operating
point can be expressed as,

ai; 0 a3 b1
©'=10 ag2 Qo3 '+ bs u

0 0 ass bs
= Az" + b/ (32)
v =[c1 ¢z Oz’ =ca’ (33)

where
1 _

= a9y = ———(G, + A+ 7). 4
a1] = as ye (@G +d+7) (34)

In (32)-(34) the prime (') and bar (-) superscripts represent
deviation and steady-state values, respectively. A simple cal-
culation shows that the linear observability matrix has the
form,

c c1 co 0
cA = |C1a11 C20922 0 (35)
cA? c1a?;, cpa3, *

where the asterisk (*) represents a non-zero entry. Because
a1 = asg, the first two rows of the observability matrix are
linearly dependent and the linearized system is unobservable
at every operating point. The unobservability is due to the de-
coupled nature of the reaction invariant differential equations
in (15) and (16).

Because the linearized pH model contains an unobservable
mode, a nonlinear closed-loop observer does not exist. How-
ever, an open-loop observer can be used to generate estimates
of the reaction invariants without the assumption of observ-
ability. Using this approach, errors in the initial conditions of
the state variables will decay according to the dynamics of the
process instead of a rate specified in the observer design. In
order to facilitate experimental implementation, the observer
design is based on a discretized version of the process model.
Because the differential equations for the reaction invariants
are decoupled, the invariants can be estimated sequentially.

Invariant Wy, can be estimated with an open-loop observer,
and then an estimate of W,, can be generated from the
estimated W}, and the measured pH, using the output equation.
Hence, the reaction invariants are estimated with a reduced-
order, open-loop observer. A related estimation scheme has
been proposed by Girardot [20].

The open-loop observer for Wy, is obtained by discretizing
the differential equation for Wy, in (18) using a semi-implicit
Euler scheme,

. Tyt
B2k = (36)
where
Tpo1 = 2o g1+ At/(A1T3 1)
X (qiWa1 + Wastg k-1 + Waads—1)  (37)
Wily 214 At/(Azsp-1)
X (q1 + va,k—1+ dr_1). (38)

In (36)—(38), At = 15 s is the sampling period, z; represents
the value of variable 2 at sampling instant %, and the carat
superscript (*) represents a predicted value. The estimate of
W4 can be generated by solving the output equation in (23)
for W,4 using the estimated value of W, and the measured
pH:

B p=—10%"1 4 107 — Gy,
1+ 2 x 10¥«—pK2
X 1+ 10PK1—we 4 10¥x—pPK2"

(39)

In order to compensate for the dynamics of the base flow
control valve, the differential equation in (24) is discretized
using an implicit Euler scheme to yield:

_ 1 At
Ug,k = @ Ug k—1 + ?U‘uc,k—l

The estimate of the last implemented base flow rate, Ug k—1,
can then be employed in the control law to provide compensa-
tion for the valve dynamics. The non-adaptive nonlinear output
feedback control law is derived by discretizing (30) using the
estimated values of the reaction invariants,

(40)

V(& Yr) ek = Y(Eh—1, Yo—1)ta k-1 + € 2 At(ysp ~ Y1)
=27 (yk — yr—1) + a(@r, yr)
— a(Zg-1,yx-1) + B(Zx, Y& )d

Uqg =

= B(Er—1,Yr—1)drk—1 (41)
where
(e, k) = ) @k, yr)co (ur) £ (1) (42)
BlEk, yk) £ cj (Er, i) o (yn)p(1) (43)
V(Eks yr) £~y (Eny )z ()9 (@) (44)
_ €72 Jo(yep — 9)dr — 267y + ¢5 (2, y)ea (y) £ (2) + pla)d] 30)

—cy (2, y)es (y)g(z)
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Fig. 2. Simulated non-adaptive nonlinear control for buffer flow rate dis-
turbances.

In the non-adaptive case the nominal buffer flow rate d = 0.55
ml/s is used in the control law. The controller is initialized with
the values of the reaction invariants shown in Table 1.

In the simulation study [17], the non-adaptive nonlinear con-
troller provides vastly superior setpoint tracking and improved
performance for unmeasured disturbances in the acid flow rate
as compared to a conventional PI controller. However, the
simulation results in Fig. 2 demonstrate that the non-adaptive
controller provides poor control for the sequence of buffer flow
rate changes shown in Table II. For the first three disturbances,
the pH responses are somewhat sluggish but still superior to
PI controller responses [17]. However, when g, — 0 ml/s the
closed-loop system is unstable because of the large increase
in the process gain. The estimates of the reaction invariants
are particularly poor in this case [17]. As long as the actual
value of Wp4 remains sufficiently large, the controller can
overcome the poor estimates. However, when the buffer flow
rate is changed to zero, W;4 — 0 and the controller cannot
stabilize the system. As shown in the next section, significantly
improved estimates of W34 can be obtained by combining
the output feedback controller with a parameter estimator that
estimates the buffer flow rate.

B. Parameter Estimation

In this section, the nonlinear output feedback controller is
combined with a parameter estimator which provides on-line

Pyt = Preser
Setr_flag=1
Seti_flag=1

g |

In_reset:  logical function that determines if e,
— €1, €k-2 2 € and i_flag 2 iq).
[ Compute di A
Neg_buff: logical function that determines if dy,
A A A A
y die_15 dg 2, g3, dxa Sdyg.
Out_reset: logical function that determines if
rflag=1landey, ey |, 5.3 <€y

A

Filter uy

i_flag = i_flag+1

Compute uy | . Yes f

#<_ Out_reset r_flag=0

Fig. 3. Flow diagram for the adaptive nonlinear controller.
TABLE 1
STANDARD BUFFER AND ACID FLOW RATE DISTURBANCES
Time (min) Q> (ml/s) qq (ml/s)
0 0.55 16.6
30 1.2 14.6
60 20 18.6
90 1.0 16.6
120 0 _
150 0.55 -

estimates of the unmeasured buffer flow rate. Henson and
Seborg [11] have investigated via simulation the performance
of three buffer flow rate estimation schemes assuming the
reaction invariants are available for feedback. The direct
approach of Sastry and Isidori [13] and the indirect scheme of
Teel et al. [14] are shown to be unsuitable for the experimental
system where the reaction invariants cannot be measured and
sampling is required. Conversely, a new indirect adaptive
control technique was developed which provides excellent
performance and is suitable for actual implementation. The
proposed estimation scheme is based on a recursive least-
squares algorithm with covariance resetting. The modification
of the parameter estimator for output feedback is presented
below.

The buffer flow rate estimator is derived by discretizing
the expression for the time derivative of y in (25). A for-
ward difference discretization is employed to preserve linear
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Fig. 4. Simulated adaptive nonlinear control for setpoint changes.

parameterization. The resulting expression is:

Yr = yr—1 — Atcy  (Teo1, Yr1)co(Th_1)
X [f(zr-1) + 9(Tr_1)ta k-1 + D(Th—1)dk—1]. (45)

The estimation equation follows directly from (45) with two
modifications. First, the unmeasured state variables (z; and
x2) are replaced by their estimates (£; and #,) obtained
from the open-loop observer in (36)-(39). Second, a filtered
pH value (yf) is used instead of the measured pH (y) in
order to reduce undesirable covariance resetting due to process
noise present in the experimental system. A discrete-time,
first-order transfer function with unity gain and time constant
a. is employed for pH measurement filtering. With these
modifications, the estimation error is calculated as,

ex = U — Nedr—1 (46)
where
v & Atc;l(i"k_l,y,{_l)cx(.ﬁk_l)
X [f(E-1) + 9(@x—1)ua k1] +y —yl_, @7
e 2 —Ate (@Er-1, 9] ea(r-1)p(Eror). @8)
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Fig. 5. Simulated adaptive nonlinear control for buffer flow rate distur-
bances.

The estimated buffer flow rate (dy,) is updated using a normal-
ized least-squares estimator [21]:

Pr_onrex
1+ Py_on?
Pxf_sz
1+ Pk_zn;‘: ’

In the state feedback case [11], the adaptive nonlinear con-
troller provides excellent tracking and regulatory performance
using a simple covariance resetting scheme. However, these
results were obtained assuming that the reaction invariants are
available for feedback, the liquid level is constant, and the
dynamics of the actuators and transmitters are insignificant.
The increased complexity of the present case necessitates a
considerably more elaborate scheme to ensure satisfactory
interactions between the estimator and the controller. The
specific modifications employed are discussed below.

I. The covariance is reset only when three consecutive
values of the prediction error exceed an error toler-
ance ey, [20], [22]. Hence, the covariance resetting
algorithm is P(0) = P(k,) = P.eger Where k, =

de = dx_y + (49)

P =P~ (50)



HENSON AND SEBORG:

W, (M)

Wiy (M)

Fig. 6.

100
Time (min)
05 T T T
04
03+
02}
0.1
0.0 ‘k k ﬂa
. v V
0.1 f~ -
02 ] ] ] 7
0 50 100 150
Time (min)

Simulated adaptive nonlinear control for buffer flow rate distur-

bances.

{k | lex), |ex—1], |€x—2| > eto1}. This modification and
the pH measurement filtering described previously help
reduce undesirable covariance resetting due to process
noise.

An upper limit on the frequency of covariance resets
is enforced. The frequency is determined by a tuning
parameter iy, which represents the minimum number
of sampling periods between covariance resets. This
modification is necessitated by the extremely fast decay
of the covariance under most operating conditions.
Different values of the estimated buffer flow rate and
reaction invariants are maintained for the estimator and
controller. Under most conditions the estimated buffer
flow rates are the same. However, Ehe estimated buffer
flow rate used by the controller (d. ) is restricted to
be non-negative and is set to the nominal value in
Table I (0.55 ml/s) if five consecutive values produced
by the estimator are less than a tolerance di,. The
estimated reaction invariants used by the controller are
then computed as in (36)-(39) except that dl)k is used
instead of cik. Restricting qu to be non-negative im-
proves stability when the actual buffer flow rate drops to

ADAPTIVE NONLINEAR CONTROL OF A PH NEUTRALIZATION PROCESS
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Simulated adaptive nonlinear control for acid flow rate disturbances.

zero, while resetting cic,k to the nominal value provides
significantly improved performance for certain acid flow
rate disturbances which cause a sustained negative value
of [Zk

Once the covariance is reset, the controller output is
filtered until three consecutive values of the prediction
error are less than a tolerance e.,. The controller out-
put is filtered using a discrete-time, first-order transfer
function with unity gain and time constant «.. This
modification improves stability when the actual buffer
flow rate drops to zero.

The adaptive nonlinear output feedback control algorithm is
summarized in Fig. 3. Nominal estimator and controller tuning

parameters are shown in Table III. For all simulations, the

state and parameter estimator are initialized with the reaction
invariants and buffer flow rate in Table 1.

The simulated setpoint tracking performance of the adaptive
nonlinear controller is shown in Fig. 4. The adaptive controller

provides good, but slightly asymmetrical, setpoint responses

and very reasonable control moves. Note that the controller

sient

provides good setpoint tracking despite generating poor tran-

estimates of the buffer flow rate (g2). This behavior,
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Fig. 8. Simulated and experimental titration curves for g3 (top) and g2

(bottom) changes.

TABLE I
NOMINAL TUNING PARAMETERS FOR THE ADAPTIVE NONLINEAR CONTROLLER
Preset 100
Crol 0.035
il 12
2 0.472
e 0472
digt —0.1 mi/s
€ 1 min

which is not present in the state feedback case [11], can be
attributed to sampling. The model discretization introduces
modeling error which causes the estimator to enter covariance
reset and modify the estimated g, after each setpoint change.
After the initial transient, however, the estimated ¢ returns
to a value which is sufficiently close to the true value (0.55
ml/s) to yield good performance.

The simulated performance of the adaptive nonlinear con-
troller for the buffer flow rate disturbances in Table II is shown
in Figs. 5 and 6. The adaptive controller clearly outperforms
the non-adaptive controller in Fig. 2 for the critical buffer
flow rate change g, — 0 ml/s at ¢ = 120 min. The adaptive
controller also provides slightly improved control for the other
go disturbances, and generates reasonable control moves. The
parameter estimator tracks go very effectively, especially when
g2 — 0 ml/s. The estimated reaction invariants and the
prediction error are shown in Fig. 6. Like the buffer flow

.

I 1 1
0 30 100 120 140 160 180

Time {min)

=
=3
4 1 1 1 1
50 100 150 200
Time {min)
Fig. 9. Open-loop responses for base (top) and buffer (bottom) flow rate
changes.

rate, excellent estimation of the reaction invariants is obtained
for all g changes. Note that the estimation error is quickly
returned to zero after each g change, and that the largest
estimation errors are obtained for the final two disturbances
which correspond to the most significant buffering changes.

In Fig. 7 the simulated performance of the adaptive con-
troller for the acid flow rate changes in Table II is shown.
Because - the state estimator uses a constant value of the
acid flow rate to produce the reaction invariant estimates,
acid flow rate disturbances represent a robustness test for
the adaptive controller. The controller provides significantly
improved pH responses as compared to the non-adaptive
controller [17]. The control moves of the adaptive controller
are reasonable, but a rather large overshoot is obtained for
the second disturbance. Because all modeling errors are at-
tributed to buffering changes, the adaptive controller yields
poor estimates of the buffer flow rate. Note that the estimated
g2 used by the controller Jc,k) is reset to the nominal value
of 0.55 mls after the second disturbance as previously dis-
cussed. Because the estimated g, is poor, the state estimator
generates inaccurate estimates of the reaction invariants [17].
Despite the poor parameter and state estimates, the adaptive
controller provides satisfactory control. Because the acid flow
rate disturbances have a significant effect on the prediction
error [17], the performance of the parameter estimator cannot
be improved by increasing the prediction error tolerance
without significantly degrading closed-loop performance for
g2 disturbances.
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Fig. 10. PI control for setpoint changes. Fig. 11. PI control for modified buffer flow rate disturbances.

IV. EXPERIMENTAL RESULTS

In this section, the adaptive nonlinear output feedback
controller presented in Section III is applied to the UCSB
pH neutralization system. In order to ascertain the advantages
offered by the adaptive nonlinear control strategy, experimen-
tal results are also presented for a conventional PI controller
and the non-adaptive version of the nonlinear controller. The
confrollers are evaluated for setpoint changes and unmeasured
disturbances in the buffer and acid flow rates.

A. Open-Loop Behavior

In this section, the steady-state and dynamic open-loop
behavior of the experimental pH system is investigated. Sim-
ulated and experimental titration curves for base and buffer
flow rate changes are shown in Fig. 8. For the base flow rate
changes, the experimental titration curve matches that obtained
via simulation reasonably well over a wide range of pH
values. The most significant deviations occur at low and high
pH values which should not be encountered in closed-loop
operation if the controller is performing adequately. However,
the differences in the titration curves in the pH range 7-8 are
important because this region will obviously be encountered.
In this case, a slight overshoot in the pH response is expected
because the model underestimates the process gain,

Conversely, the simulated and experimental titration curves
are significantly different for buffer flow rate changes. The
largest deviations occur at higher buffer flow rates where

the experimental pH is significantly higher than predicted by
simulation. The results demonstrate that the pH deviations are
not simply (e.g. linearly) related to the buffer flow rate. A
variety of tests were conducted to locate the cause of the
discrepancy, but a plausible explanation of the results was
not obtained. All attempts to reduce this plant/model mis-
match by adjusting model parameters increased the mismatch
at lower buffer flow rates. Because the pH deviations are
relatively small for the more critical lower buffer flow rates,
no adjustment of model parameters was attempted in any of
the subsequent experiments. As shown below, the adaptive
nonlinear controller is able to handle this modeling error.

Open-loop responses for the base and buffer flow rate
changes indicated in Table II are shown in Fig. 9. Note that
for all the experimental tests, the actual run time is plotted
and, therefore, the plots do not begin with ¢ = 0. However,
the input changes used in Fig. 9 are identical to those listed in
Table I with the starting time of the experimental run simply
taken as an offset. The pH responses for the base changes are
very similar to those obtain via simulation [17]. However, the
experimental and simulated pH responses for buffer flow rate
changes are significantly different for buffer flow rates higher
than the nominal value of 0.55 ml/s. Based on the titration
curve in Fig. 8, this behavior is expected.

B. PI Control

In this section, the performance of a conventional PI con-
troller is evaluated for setpoint changes and unmeasured
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Fig. 12. PI control for modified acid flow rate disturbances.
TABLE IV
MODIFIED BUFFER AND ACID FLOW RATE DISTURBANCES
Time (min) qp (ml/s) q; (mlfs)
0 0.55 16.6
30 1.2 15.1
60 2.0 18.1
90 1.0 16.6
120 02 -
150 0.55 -

disturbances. Derivative action is not included in the controller
because of the pH measurement time delay [20]. The controller
tuning parameters (K. = 2.4 mls, 77 = 100 s) employed
are the same as those used in simulation studies [17]. The
setpoint tracking behavior of the PI controller is shown in
Fig. 10. The first setpoint change is tracked reasonably well,
but the pH responses for the other two changes are extremely
sluggish. The pH responses and manipulated input moves are
very similar to those obtained in simulation [17]. The only
significant differences between the two results is the process
noise in the experimental system at the pH = 8 setpoint. The
effects of process noise at this setpoint are much greater than
in the other regions due to the magnitude of the process gain.

The performance of the PI controller for the modified
sequence of buffer flow rate disturbances listed in Table IV is
shown in Fig. 11. The standard disturbance sequence in Table
II was modified because the PI controller was unable to handle

1 ] | L
100 120 140 160 180 200

Time (min)

<z (mi/s)

1 1 1 |
100 120 140 160 180 200
Time (min)

Fig. 13. Non-adaptive nonlinear control for setpoint changes.

the change where ¢o — 0 ml/s. Because similar results were
obtained for the nonlinear controllers and the disturbance is
extremely severe, the controllers were evaluated for the more
realistic changes in Table IV. In this case, at ¢ = 120 min
(170 min in Fig. 11) the buffer flow rate is changed to 0.2 ml/s
instead of 0 ml/s. The pH responses in Fig. 11 are very sluggish
for all the buffer flow rate disturbances and similar to those
obtained via simulation [17]. Because of the larger process
gains at lower buffer flow rates the controller has difficulty
maintaining the pH at the setpoint after g — 0.2 ml/s. Note
that due to plant/model mismatch, a steady-state value of the
base flow rate slightly less than 15.55 ml/s was required to
obtain a pH of 7. Typically, the necessary steady-state base
flow rate was in the range 15.1-15.5 ml/s.

PI control for the modified set of acid flow rate disturbances
listed in Table IV is shown in Fig. 12. The modified acid dis-
turbances were employed in all the closed-loop experimental
runs because the tank 1 level exceeds the allowable limit for
the positive acid flow rate change in Table II. The modified
disturbances are identical to those in Table II except that the
magnitude of each disturbance is 1.5 ml/s instead of 2.0 ml/s.
As predicted by simulation [17], the PI controller is sluggish
for the first and third disturbances and cannot even reach the
setpoint after the second disturbance.

C. Non-Adaptive Nonlinear Control

In this section, the non-adaptive version of the nonlinear
output feedback controller presented in Section III is evaluated
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Fig. 14. Non-adaptive nonlinear control for modified buffer flow rate dis-
turbances.

for setpoint changes and unmeasured buffer and acid flow
rate disturbances. For all the experimental runs, the controller
was tuned with ¢ = 1 min and initialized with the values
of the reaction invariants shown in Table 1. The setpoint
tracking performance of the non-adaptive controller is shown
in Fig. 13. The controller tracks the second and third setpoint
changes quickly and without overshoot, but has some difficulty
maintaining the pH = 8 setpoint. The manipulated input moves
demonstrate that the small pH oscillations at the pH = 8
setpoint are not due to the control moves, but rather result
from noise that has a greater effect in this region because
of the large process gain. For the second and third setpoint
changes, the pH responses and control moves are very similar
to those obtained by simulation [17].

Non-adaptive nonlinear control for the modified buffer flow
rate disturbances in Table IV is shown in Fig. 14. As expected,
the non-adaptive controller is able to reject most of the dis-
turbances quite effectively. However, when go — 0.2 ml/s at

= 215 min, the controller produces oscillatory control moves
which induce sustained pH oscillations. In fact, it appears that
the oscillations result from a linear instability mechanism (i.e.,
the linearized closed-loop system is unstable at this operating
point) because the pH and base flow rate are near their
steady-state values when the oscillations begin. However, the
non-adaptive controller provides excellent performance for this
disturbance sequence in simulation [17]. The disparity between
the simulation and experimental results when 9, — 0.2 ml/s
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Fig. 15. Non-adaptive nonlinear control for modified acid flow rate distur-
bances.

is attributable to plant/model mismatch. Although the actual
reaction invariants are not known in experiment, simulation
results [17] indicate that the oscillatory behavior of the non-
adaptive controller is due to poor estimates of the reaction
invariants at low buffering. By using an estimate of the buffer
flow rate to generate the reaction invariant estimates, the
adaptive nonlinear controller should yield improved control.
The regulatory performance of the non-adaptive nonlinear
controller for the modified acid flow rate disturbances in Table
IV is shown in Fig. 15. Adequate pH control is obtained
for the second and third disturbances. However, for the first
disturbance the pH deviates from the setpoint by more than
1.5 pH units and then undershoots the setpoint by over
0.75 pH units. The poor pH response for this disturbance
is caused by the controller twice moving the base flow
rate in the wrong direction. Although smaller acid flow rate
disturbances were used experimentally, this behavior is also
predicted in simulation [17]. The poor regulatory performance
of the non-adaptive controller is probably due to poor reaction
invariant estimates. Because the nonlinear estimator uses a
constant value of the acid flow rate to produce the reaction
invariant estimates, it is not obvious that the adaptive nonlinear
controller will provide improved performance in this case.

D. Adaptive Nonlinear Control

In this section, the adaptive nonlinear output feedback
controller presented in Section III is evaluated for buffer and
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Fig. 16. Adaptive nonlinear control for modified buffer flow rate distur-
bances.

acid flow rate disturbances. The setpoint tracking performance
of the adaptive controller was not investigated because Fig.
4 demonstrates that setpoint changes represent the least chal-
lenging test of the controller. Because excellent performance
was obtained in simulation despite poor buffer flow rate and
reaction invariant estimates, it is anticipated that the adaptive
controller should yield good setpoint tracking in experiment.
For all the experimental runs, the nonlinear adaptive controller
was initialized with the nominal buffer flow rate and reaction
invariants in Table L.

The regulatory performance of the adaptive nonlinear con-
troller for the modified buffer flow rate disturbances in Table
IV is shown in Figs. 16 and 17. As before, the controller
was not evaluated for the standard buffer flow rate changes
where g2 — 0 ml/s because of the effects of process noise
in this high gain region. The controller and estimator tuning
parameters in Table III are identical to those previously used
for simulations. The pH responses in Fig. 16 demonstrate that
the adaptive controller is able to provide excellent control for
a wide range of buffering conditions. The adaptive controller
clearly outperforms the PI controller shown in Fig. 11 for all
the disturbances. Unlike the non-adaptive controller shown in
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Fig. 17. Adaptive nonlinear control for modified buffer flow rate distur-
bances.

Fig. 14, the adaptive controller is able to maintain the system
at the setpoint when go — 0.2 ml/s. The small pH oscillations
observed in the response of the adaptive controller for this
disturbance are caused mainly by the high process gain and
process noise. The adaptive controller yields slightly improved
pH responses as compared to the non-adaptive controller for
the other buffering disturbances. Fig. 16 also demonstrate that
the improved performance provided by the adaptive controller
is not due to large control moves. The pH responses and
control moves observed experimentally are similar to the
simulation results in Fig. 5 obtained using the standard buffer
flow rate changes in Table II.

The estimated buffer flow rate produced by the adaptive
nonlinear controller is also shown in Fig. 16. At near steady-
state conditions, the estimation error is not more than 15%
of the actual value. These errors are considerably less than
those obtained under open-loop conditions [17]. The improved
buffer flow rate estimation observed under closed-loop con-
ditions is probably attributable to a more accurate model of
the titration curve at a pH of 7. As shown in Fig. 8, the
largest deviations in the ¢o and g3 titration curves occur at pH
values greater than 7. Hence, it appears that modeling errors
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Fig. 18. Adaptive nonlinear control for modified acid flow rate disturbances.

in the titration curve are much less significant in closed-loop
when the system is maintained near a pH of 7. Note that the
buffer flow rates estimates obtained in simulation (Fig. 5) and
experiment (Fig. 16) are very similar. The estimated reaction
invariants and prediction error are shown in Fig. 17. Although
the reaction invariants are not precisely known, the simulation
results in Fig. 6 indicate that the nonlinear state estimator
provides good tracking of the invariants. The prediction errors
obtained in simulation (Fig. 6) and experiment (Fig. 17) are
similar, although the effects of process noise are significant
when g2 = 0.55 ml/s.

The performance of the adaptive nonlinear controller for the
modified acid flow rate disturbances in Table IV is shown in
Fig. 18. As previously discussed, acid flow rate disturbances
represent a robustness test because the adaptive controller is
explicitly designed to account only for buffering changes.
The pH responses in Fig. 18 demonstrate that the adaptive
nonlinear controller provides superior control as compared to
the PI controller in Fig. 12 and the non-adaptive nonlinear
controller in Fig. 15. The most significant improvement oc-
curs for the first disturbance where the PI and non-adaptive
controllers allow large pH deviations from the setpoint and are

quite sluggish. Conversely, the adaptive controller rejects this
disturbance quickly without allowing large pH deviations. The
control moves of the adaptive controller are considerably more
aggressive than those of the PI controller but are comparable
to those of the non-adaptive controller. The pH responses and
control moves of the adaptive controller are similar to those
obtained via simulation in Fig. 7 for the standard acid flow
rate disturbances listed in Table 2.

The estimated buffer flow rates used by the nonlinear
estimator and controller are also shown in Fig. 18. The results
are similar to those in Fig. 7 obtained in simulation. In both
cases, the estimated buffer flow rate used by the controller
is poor. Note that after the second disturbance the buffer flow
rate used by the controller is reset to the nominal value of 0.55
ml/s because the estimator generates a sustained buffer flow
rate estimate that is less than the tolerance di, in Table III.
Because a poor estimate of the buffer flow rate is generated, the
reaction invariant estimates are also inaccurate [17]. Despite
this poor estimation, adequate pH control is obtained.

V. CONCLUSION

An adaptive nonlinear output feedback control strategy for
a pH neutralization process has been developed and exper-
imentally evaluated. The adaptive nonlinear controller was
developed by combining an input—output linearizing controller,
an open-loop nonlinear state observer, and a recursive least
squares parameter estimator. The input—output linearizing con-
troller design accounts for the implicit output equation in the
reaction invariant model. A reduced-order, open-loop state
observer is employed because the reaction invariants cannot
be measured and the process model is unobservable. The
recursive least-squares estimator provides an estimate of the
buffering capacity. Non-adaptive and adaptive versions of
the nonlinear controller were compared to a conventional PI
controller on a bench-scale pH neutralization system which ex-
hibits significant nonlinear and time-varying behavior. Despite
large plant/model mismatches, the non-adaptive nonlinear con-
troller provides superior tracking and regulatory performance
as compared to the PI controller for most conditions. However,
if the buffering content of the system is sufficiently low,
the non-adaptive controller exhibits unacceptable oscillatory
behavior. Conversely, the adaptive nonlinear controller yields
excellent control over a wide range of buffering conditions.
The adaptive nonlinear controller also outperforms the PI and
non-adaptive nonlinear controllers for unmeasured acid flow
rate disturbances.

REFERENCES

[11 F. G. Shinskey, pH and pION Control in Process and Waste Streams.
New York: Wiley, 1973.

[2] G. K. McMillan, pH Control.
Society of America, 1984.

[3] A. Johnson, “The control of fed-batch fermentation processes—A sur-
vey,” Automatica, vol. 23, pp. 691-705, 1987.

[4] T. K. Gustafsson and K. V. Waller, “Dynamic modeling and reaction
invariant control of pH,” Chem. Eng. Sci., vol. 38, pp. 389-398, 1983.

Research Triangle Park, NC: Instrument



182

[51
[6

[71

[8]
191

[10

[11]

(12)

[13]

[14]

(16]

(171

(18]
(191

[20]
[21]

(22}

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO. 3, AUGUST 1994

——, “Nonlinear and adaptive control of pH,” Ind. Eng. Chem. Res.,
vol. 31, pp. 26812693, 1992.

P. Jutilia, “An application of adaptive pH-control algorithms based on
physio-chemical modeling in a chemical waste-water treatment plant,”
Int. J. Control, vol. 38, pp. 639655, 1983.

G. A. Pajunen, “Comparison of linear and nonlinear adaptive control of
pH-process,” in Proc. IEEE Conf. Decision and Control, Ft. Lauderdale,
FL, 1985, pp. 850-851.

J. R. Parrish and C. B. Brosilow, “Nonlinear inferential control,” AIChE
J., vol. 34, pp. 633-644, 1988,

W. C. Li and L. T. Biegler, “Newton-type controllers for constrained
nonlinear processes with uncertainty,” Ind. Eng. Chem. Res., vol. 29,
pp. 1647-1657, 1990.

G. L. Williams, R. R. Rhinchart, and J. B. Riggs, “In-line process-
model-based control of wastewater pH using dual base injection,” Ind.
Eng. Chem. Res., vol. 29, pp. 1254-1259, 1990.

M. A. Henson and D. E. Seborg, “Nonlinear adaptive control of a pH
neutralization process,” in Proc. IFAC DYCORD+92 Symp., College
Park, MD, 1992, pp. 151-156.

K. V. Waller and P. M. Makila, “Chemical reaction invariants and
variants and their use in reactor modeling, simulation, and control,”
Ind. Eng. Chem. Proc. Design and Develop., vol. 20, pp. 1, 1981.

S. S. Sastry and A. Isidori, “Adaptive control of linearizable systems,”
IEEE Trans. Automatic Control, vol. 34, pp. 1123-1131, 1989.

A. Teel, R. Kadiyala, P. Kokotovic, and S. Sastry, “Indirect techniques
for adaptive input-output linearization of non-linear systems,” Inz. J.
Control, vol. 53, pp. 193-222, 1991.

R. C. Hall and D. E. Seborg, “Modelling and self-tuning control of a
multivariable pH neutralization process. Part I: Modelling and multiloop
Control,” in Proc. Amer. Control Conf., Pittsburgh , PA, 1989, pp.
1822-1827.

R. C. Hall, “Development of a multi-variable pH experiment,” M. S.
thesis, University of California, Santa Barbara, 1987.

M. A. Henson, “Feedback linearization strategies for nonlinear process
control,” Ph. D. dissertation, University of California, Santa Barbara,
1992.

A. Isidori, Nonlinear Control Systems.
1989.

M. A. Henson and D. E. Seborg, “Critique of exact linearization
strategies for process control,” J. Process Control, vol. 1, pp. 122-139,
1991.

D. M. Girardot, “Control of pH based on reaction invariants,” M. S.
thesis, University of California, Santa Barbara, 1989.

G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

S. Greenland, “An application of generalized predictive control to a
nonlinear process,” M. S. thesis, University of California, Santa Barbara,
1988.

New York: Springer-Verlag,

Michael A. Henson (S’90-M’92) received the B.
S. degree from the University of Colorado (1985),
M. S. degree from the University of Texas at Austin
(1989), and the Ph. D. degree from the University
of California, Santa Barbara (1992).

He is an Assistant Professor of Chemical Engi-
neering at Louisiana State University. He has also
held the position of Visiting Research Scientist with
the DuPont Company. He has published 18 articles
on process control and related topics. Along w ith
Dr. D. E. Seborg, he is co-editor of the research
monograph Nonlinear Process Control (Prentice-Hall). His principal research
interests are: nonlinear process control and estimation; modeling and “reverse
engineering” of biological control systems; and modeling, design, and control
of membrane separation processes.

Dr. Henson is serving as an Associate Editor for the 1994 IEEE Conference
on Decision and Control. He is a member of the AIChE.

Dale E. Seborg received the B. S. degree from the
University of Wisconsin and the Ph. D. degree from
Princeton University.

He is a Professor of Chemical Engineering at
the University of California, Santa Barbara. Before
joining UCSB in 1977, he taught at the University
of Alberta for nine years. He served as department
chairman at UCSB for three years. He has publis
hed over 130 articles on process control and re-
lated topics. He is co-author of an award-winning
1989 textbook, Process Dynamics and Control, with
Profs. Mellichamp (UCSB) and Edgar (University of Texas). He is also co-
author of Multivariable Computer Control—A Case Study and co-editor of
Chemical Control Process 2.

Dr. Seborg has received several national awards, which include the 1992
Education Award from the American Automatic Control Council, the Joint
Automatic Control Conference Best Paper Award, as well as the Technical
Achievement Award from the AIC hE Southern California Section. He is an
active industrial consultant and has served as director of three organizations:
the American Automatic Control Council, the AIChE Computing and Systems
Technology Division, and the ASEE ChE Division. He was general chairman
for the 1992 American Control Conference, Chicago, IL. He currently serves
on the editorial boards of two journals: Proceedings of the IEE on Control
Theory and Applications and Adaptive Control and Signal Processing.




