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A design method for PID controllers based on the direct synthesis approach and specification of
the desired closed-loop transfer function for disturbances is proposed. Analytical expressions
for PID controllers are derived for several common types of process models, including first-
order and second-order plus time delay models and an integrator plus time delay model. Although
the controllers are designed for disturbance rejection, the set-point responses are usually
satisfactory and can be tuned independently via a set-point weighting factor. Nine simulation
examples demonstrate that the proposed design method results in very good control for a wide
variety of processes including those with integrating and/or nonminimum phase characteristics.
The simulations show that the proposed design method provides better disturbance rejection
than the standard direct synthesis and internal model control methods when the controllers
are tuned to have the same degree of robustness.

1. Introduction

The ubiquitous PID controller has continued to be the
most widely used process control technique for many
decades. Although advanced control techniques such as
model predictive control can provide significant im-
provements, a PID controller that is properly designed
and tuned has proved to be satisfactory for the vast
majority of industrial control loops.1,2 The enormous
literature on PID controllers includes a wide variety of
design and tuning methods based on different perfor-
mance criteria.3-6 Two early and well-known design
methods were reported by Ziegler and Nichols (ZN)7 and
Cohen and Coon.8 Both methods were developed to
provide a closed-loop response with a quarter decay
ratio. Other well-known formulas for PI controller
design include design relations based on integral error
criteria9-11 and gain and phase margin formulas.12

The design methods for PID controllers are typically
based on a time-domain or frequency-domain perfor-
mance criterion. However, the relationships between the
dynamic behavior of the closed-loop system and these
performance indices are not straightforward. In the
direct synthesis (DS) approach,13-15 however, the con-
troller design is based on a desired closed-loop transfer
function. Then, the controller is calculated analytically
so that the closed-loop set-point response matches the
desired response. The obvious advantage of the direct
synthesis approach is that performance requirements
are incorporated directly through specification of the
closed-loop transfer function. One way to specify the
closed-loop transfer function is to choose the closed-loop
poles. This pole placement method4,13 can be interpreted
as a special type of direct synthesis.

In general, controllers designed using the DS method
do not necessarily have a PID control structure. How-
ever, a PI or PID controller can be derived for simple
process models such as first- or second-order plus time
delay models by choosing appropriate closed-loop trans-
fer functions.15,16 For example, the λ-tuning method was

originally proposed by Dahlin17 and is widely used in
the process industries. It is based on a first-order plus
time delay model that has a relatively large time delay.
The resulting controller is a PI controller with time-
delay compensation.4 Also, the well-known internal
model control (IMC) design method1,18-20 is closely
related to the DS method and produces identical PID
controllers for a wide range of problems. For higher-
order systems, a model reduction technique and IMC
can be used to synthesize PID controllers.21 Alterna-
tively, a high-order controller can be designed and then
reduced to PID form by a series expansion.22

DS design methods are usually based on specification
of the desired closed-loop transfer function for set-point
changes. Consequently, the resulting DS controllers
tend to perform well for set-point changes, but the
disturbance response might not be satisfactory. For
example, the IMC-PID controller provides good set-
point tracking but very sluggish disturbance responses
for processes with a small time-delay/time-constant
ratio.1 However, for many process control applications,
disturbance rejection is much more important than set-
point tracking. Therefore, controller design that em-
phasizes disturbance rejection, rather than set-point
tracking, is an important design problem that has
received renewed interest recently.

Middleton and Graebe23 have investigated the rela-
tionship between input disturbance responses and
robustness. They concluded that the decision to cancel,
rather than shift, slow stable open-loop poles involves
a design tradeoff between input disturbance rejection
and robustness. Lee et al.22 extended the IMC design
approach for two degree of freedom controllers to
improve disturbance performance. Their controller is a
combination of two controllers, a standard IMC control-
ler for set-point changes and a second IMC type of
controller designed to shape the disturbance response.
Their control system also includes a set-point filter that
is specified as the inverse of the IMC controller for
disturbances. This design provides a set-point response
that is identical to that for the standard IMC controller.
This novel control scheme can provide improved dy-
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namic performance over standard IMC controllers, but
the design procedure is more complicated and might
result in unstable controllers.

It is somewhat surprising that the development of
direct synthesis design methods for disturbance rejec-
tion has received relatively little attention. Early design
methods for sampled-data systems were based on
specifying the z transform of the desired closed-loop
response to a particular disturbance.14 However, this
approach is sensitive to the assumed disturbance and
does not necessarily produce a PID controller. A more
promising approach was proposed recently by Szita and
Sanathanan.24-26 They specify the desired disturbance
rejection characteristics in terms of a closed-loop trans-
fer function for disturbances. The resulting controller
usually is not a PI or PID controller and might be of
high order. The authors propose approximating the
high-order controller by a low-order controller using
error minimization in the frequency domain.

In this paper, analytical expressions for PI and PID
controllers are derived for common process models
through the direct synthesis method and disturbance
rejection. The proposed design method has a single
design parameter, the desired closed-loop time constant,
τc. The performance-robustness tradeoff involved in
specifying τc is analyzed. A simple set-point weighting
factor is used to improve controller performance for set-
point changes without affecting the response to distur-
bances. Simulation results for nine examples demon-
strate that the proposed design method provides robust
PID controllers that perform well for both disturbance
and set-point changes.

2. Direct Synthesis Method Based on Set-Point
Responses

In the direct synthesis approach, an analytical ex-
pression for the feedback controller is derived from a
process model and a desired closed-loop response. In
most of the DS literature, the desired closed-loop
response is expressed as a closed-loop transfer function
for set-point changes. Consequently, this popular ver-
sion of the direct synthesis method will be briefly
introduced in the next section.

2.1. Direct Synthesis for Set-Point Tracking
(DS). Consider a feedback control system with the
standard block diagram in Figure 1a. Assume that Gp(s)
is a model of the process, measuring element, transmit-
ter, and control valve.

The closed-loop transfer function for set-point changes
is derived as

Rearranging gives an expression for the feedback con-
troller

Let the desired closed-loop transfer function for set-point
changes be specified as (y/r)d, and assume that a process
model G̃p(s) is available. Replacing the unknown (y/r)
and Gp(s) by (y/r)d and G̃p(s), respectively, gives a design
equation for Gc(s)

Because the characteristics of (y/r)d have a direct impact
on the resulting controller, (y/r)d should be chosen so
that the closed-loop performance is satisfactory and the
resulting controller is physically realizable.

The DS controller in eq 3 results in the following
closed-loop transfer functions

For the ideal case where the process model is perfect
(i.e., Gp ) G̃p), the closed-loop transfer functions become

respectively.
2.2. Comparison with Internal Model Control

(IMC). A well-known control system design strategy,
internal model control (IMC) was developed by Morari
and co-workers20 and is closely related to the direct
synthesis approach. Like the DS method, the IMC
method is based on an assumed process model and
relates the controller settings to the model parameters
in a straightforward manner. The IMC approach has
the advantages that it makes the consideration of model
uncertainty and the making of tradeoffs between control
system performance and robustness easier.

The IMC approach has the simplified block diagram
shown in Figure 1b, where G̃p(s) is the process model
and Gc

/(s) is the IMC controller. The IMC controller
design involves two steps:

Step 1. The process model G̃p(s) is factored as

Figure 1. Feedback control strategies. (a) Classical feedback
control. (b) Internal model control.

y
r

)
Gp(s) Gc(s)

1 + Gp(s) Gc(s)
(1)

Gc(s) )
(yr)

Gp(s)[1 - (yr)]
(2)

Gc(s) )
(yr)d

G̃p(s)[1 - (yr)d]
(3)

(yr)DS
)

Gp(yr)d

G̃p + (yr)d
(Gp - G̃p)

(4)

(yd)DS
)

G̃pGd[1 - (yr)d]
G̃p + (yr)d

(Gp - G̃p)
(5)

(yr)DS
) (yr)d

(6)

(yd)DS
) Gd[1 - (yr)d] (7)

G̃p(s) ) G̃p+(s) G̃p-(s) (8)

4808 Ind. Eng. Chem. Res., Vol. 41, No. 19, 2002



where G̃p+(s) contains any time delays and right-half-
plane zeros. It is specified so that its steady-state gain
is 1.

Step 2. The IMC controller is specified as

where f is a low-pass filter with a steady-state gain of
1. The IMC filter f typically has the form

where τc is the desired closed-loop time constant.
Parameter r is a positive integer that is selected so that
either Gc

/ is a proper transfer function or the order of
its numerator exceeds the order of the denominator by
1, if ideal derivative action is allowed.

The IMC structure, Figure 1b, can be converted into
the conventional feedback control structure, Figure 1a.27

Comparing the resulting controllers and the closed-loop
responses of the IMC and direct synthesis (DS) ap-
proaches, it is obvious that these two approaches
produce equivalent controllers and identical closed-loop
performances in certain situations. For example, if the
desired closed-loop response for set-point change is
specified as (y/r)d ) G̃p+ f, then the DS controller is
equivalent to the IMC controller, and identical closed-
loop performance results, even when modeling errors
are present.

2.3. Direct Synthesis for PI/PID Controllers. In
general, both the direct synthesis and IMC methods do
not necessarily result in PI/PID controllers. However,
by choosing the appropriate desired closed-loop response
and using either a Padé approximation or a power-series
approximation for the time delay, PI/PID controllers can
be derived for process models that are commonly used
in industrial applications.

Choose the desired closed-loop transfer function as

where θ is the time delay of the system and τc is the
design parameter. Then, the DS design eq 3 and a
truncated power-series expansion for the time delay
term in the denominator, e-θs ≈ 1 - θs, gives

For systems that can be described by first-order and
second-order plus time delay models, a PI or PID
controller can be obtained from eq 12. For a first-order
plus time delay model

eq 12 reduces to

Equation 14 can be expressed as an ideal PI controller

with the following controller settings

For a second-order plus time delay model

substituting into eq 12 gives an ideal PID controller

with the following settings

Identical PI/PID settings have been obtained using the
IMC approach.1,18

3. Direct Synthesis Design for Disturbance
Rejection

The PI/PID settings obtained from the DS and IMC
approaches are based on specifying the closed-loop
transfer function for set-point changes. For processes
with small time-delay/time-constant ratios, these PI/PID
controllers provide very sluggish disturbance responses.1
Therefore, it is worthwhile to develop a modified direct
synthesis approach based on disturbance rejection. The
new design method will be denoted by “DS-d”.

Consider a control system with the standard block
diagram shown in Figure 1a. The closed-loop transfer
function for disturbances is given by

Rearranging gives an expression for the feedback con-
troller

Let the desired closed-loop transfer function for distur-
bances be specified as (y/d)d, and assume that a process
model G̃p(s) and a disturbance model G̃d(s) are available.
Replacing the unknown (y/d), Gp(s), and Gd(s) by (y/d)d,
G̃p(s), and G̃d(s), respectively, gives a design equation
for Gc(s)
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For the DS-d controller in eq 25, the closed-loop transfer
functions are

For the ideal case where the model is perfect (i.e., G̃p )
Gp and G̃d ) Gd), the closed-loop transfer functions
become

respectively.
The DS-d design method does not necessarily produce

a PI or PID controller. The structure and order of the
controller depend on the specification of the desired
closed-loop response and the process model. In this
section, the new DS-d design method is used to derive
PI/PID controllers for simple process models that are
widely used.

3.1. DS-d PI Settings. The DS-d methods will now
be used to design PI controllers for a first-order plus
time delay model and then an integrator plus time delay
model.

3.1.1. First-Order Plus Time Delay Model. As-
sume that the process is described by a first-order plus
time-delay model

and that Gd(s) ) Gp(s). (This latter assumption will be
removed in section 3.3). Thus, if the PI controller in eq
15 is used, the closed-loop transfer function in eq 23 can
be expressed as

Approximating the time delay term in the denominator
by a first-order power-series expansion, e-θs ≈ 1 - θs,
and rearranging gives

Therefore, for PI controller design, it is reasonable to
specify the desired closed-loop transfer function as

with

The DS-d design equation, eq 25, produces a standard
PI controller if the time delay in the denominator is
approximated by, e-θs ≈ 1 - θs. The resulting PI
controller parameters are

and Kd is given by

From eqs 35 and 36, it is apparent that, for large
values of τc, anomalous results can occur because Kc and
K can have opposite signs and τI can become negative.
Both of these undesirable situations can be avoided,
however, if the design parameter τc satisfies

This constraint on τc is not restrictive at all because
direct synthesis controllers are typically designed so
that τc < 2τ.

For this PI controller and G̃p ) Gp, the closed-loop
transfer function for set-point changes is

3.1.2. Integrator Plus Time Delay Model. Pro-
cesses with integrating characteristics are quite com-
mon in the process industries. Assume that the process
is described by

and that Gd(s) ) Gp(s). If a PI controller is used, the
closed-loop transfer function for disturbances in eq 23
becomes

Approximating the time delay term in the denominator
by e-θs ≈ 1 - θs gives
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Therefore, if the desired closed-loop transfer function
for disturbances is specified as

with Kd ) τI/Kc, then the controller obtained using the
DS-d method can be rearranged to give a standard PI
controller with

and Kd is given by

For this controller and G̃p ) Gp, the closed-loop
response for set-point changes is

3.2. DS-d PID Settings. In this section, the proposed
DS-d method is used to design PID controllers for some
commonly used process models, including first-order and
second-order plus time delay models and an integrator
plus time delay model.

3.2.1. First-Order Plus Time Delay Model. As-
sume that the process is described by a first-order plus
time delay model

and that Gd(s) ) Gp(s). Thus, if the PID controller in eq
19 is used, the closed-loop transfer function in eq 23 can
be expressed as

Approximating the time delay term in the denominator
by a first-order Padé approximation

and rearranging gives

Thus, for PID controller design, it is reasonable to
specify the desired closed-loop transfer function as

with Kd ) τI/Kc. Then, the controller obtained from the
DS-d method, eq 25, can be rearranged to give a
standard PID controller. The resulting PID controller
parameters are

and Kd is given by

It is apparent from the above equations that KKc, τI,
and τD can be negative for large values of τc. However,
simulation experience has demonstrated that this po-
tential problem does not occur if the closed-loop time
constant τc is chosen in a reasonable manner.

For this PID controller and G̃p ) Gp, the closed-loop
transfer function for set-point changes is obtained as

3.2.2. Integrator Plus Time Delay Model. Now
assume that the process is described by

and that Gd(s) ) Gp(s). If a PID controller is used, the
closed-loop transfer function in eq 23 becomes
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Approximating the time delay term in the denominator
by eq 50 gives

Therefore, if the desired closed-loop transfer function
for disturbances is specified as

with Kd ) τI/Kc, then the controller obtained using the
DS-d method can be rearranged to give a standard PID
controller. The resulting PID controller parameters are

and Kd is given by

For this controller and G̃p ) Gp, the closed-loop response
for set-point change is obtained as

3.2.3. Second-Order Plus Time Delay Model.
Assume that the process is described by a second-order
plus time delay model

and that Gd(s) ) Gp(s). Thus, if a PID controller is used,
the closed-loop transfer function in eq 23 can be
expressed as

Approximating the time delay term in the denominator
by a first-order power-series expansion, e-θs ≈ 1 - θs,
and rearranging gives

Therefore, if the desired closed-loop transfer function
for disturbance is specified as

with Kd ) τI/Kc, then the controller obtained from the
DS-d method, eq 25, can be rearranged to give a
standard PID controller. The resulting PID controller
parameters are

and Kd is given by

For this PID controller and G̃p ) Gp, the closed-loop
transfer function for set-point changes is

3.2.4. First-Order with an Integrator Plus Time
Delay Model. Assume that the process is described by

and that Gd(s) ) Gp(s). If a PID controller is used, then
the closed-loop transfer function in eq 23 becomes

Approximating the time delay term in the denominator
by e-θs ≈ 1 - θs gives

Therefore, if the desired closed-loop transfer function
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for disturbance is specified as

with Kd ) τI/Kc, then the controller obtained from the
DS-d method can be rearranged to give a standard PID
controller. The resulting PID controller parameters are

and Kd is give by

For this PID controller and G̃p ) Gp, the closed-loop
transfer function for set-point changes is

3.3. Discussion. In the previous sections, the DS-d
method has been used to design PI/PID controllers for
widely used process models. The resulting PI/PID
controller settings are shown in Table 1.

Remark 1. The only design parameter, τc, is directly
related to the closed-loop time constant. As τc decreases,
the closed-loop response becomes faster.

Remark 2. Larger values of τc give larger values of
Kd because Kd ) τI/Kc.

For a unit step disturbance at the process input,
A° ström and Hägglund4 derived the following relation
for the integral error (IE) associated with PI/PID control

Thus

This expression means that smaller τc values provide
smaller IE values for step disturbances.

Remark 3. Although smaller values of τc provide
better performance for disturbance and set-point changes,
the control system robustness is worse. Therefore, the
system robustness should be considered when τc is being
chosen.

Remark 4. The PI/PID tuning rules in Table 1 were
derived based on the assumption that Gd ) Gp. For the
more general case where Gd * Gp, the desired closed-

Table 1. PI/PID Controller Settings for the DS-d Design Method

casea,b model KKc τI τD

A Ke-θs

τs + 1
τ2 + τθ - (τc - τ)2

(τc + θ)2

τ2 + τθ - (τc - τ)2

τ + θ

-

B Ke-θs

τs + 1 (2τθ + θ2

2 )(3τc + θ
2) - 2τc

3 - 3τc
2θ

2(τc + θ / 2)3

(2τθ + θ2

2 )(3τc + θ
2) - 2τc

3 - 3τc
2θ

(2τ + θ)θ

3τc
2τθ + τθ2

2 (3τc + θ
2) - 2(τ + θ)τc

3

(2τθ + θ2

2 )(3τc + θ
2) - 2τc

3 - 3τc
2θ

C Ke-θs

s
2τc + θ

(τc + θ)2

2τc + θ -

D Ke-θs

s
θ(3τc + θ

2)
(τc + θ

2)3

3τc + θ
2 (τc + θ

2)3
- 2τc

3

θ(3τc + θ
2)

E Ke-θs

s(τs + 1)
(3τc + θ)(τ + θ)

(τc + θ)3

3τc + θ 3τc
2τ + 3τcτθ - τc

3 + τθ2

(3τc + θ)(τ + θ)

F K(τas + 1)

s(τs + 1)

(3τc - τa)(τ - τa)

(τc - τa)
3

3τc - τa 3τc
2τ - 3τcττa - τc

3 + ττa
2

(3τc - τa)(τ - τa)

G Ke-θs

(τ1s + 1)(τ2s + 1)
[(τ1 + τ2)θ + τ1τ2](3τc + θ) - τc

3 - 3τc
2θ

(τc + θ)3

[(τ1 + τ2)θ + τ1τ2](3τc + θ) - τc
3 - 3τc

2θ

τ1τ2 + (τ1 + τ2 + θ)θ

3τc
2τ1τ2 + τ1τ2θ(3τc + θ) - (τ1 + τ2 + θ)τc

3

[(τ1 + τ2)θ + τ1τ2](3τc + θ) - τc
3 - 3τc

2θ

H Ke-θs

τ2s + 2úτs + 1
(2úτθ + τ2)(3τc + θ) - τc

3 - 3τc
2θ

(τc + θ)3

(2úτθ + τ2)(3τc + θ) - τc
3 - 3τc

2θ

τ2 + (2úτ + θ)θ

3τc
2τ2 + τ2θ(3τc + θ) - (2úτ + θ)τc

3

(2úτθ + τ2)(3τc + θ) - τc
3 - 3τc

2θ

I K(τas + 1)

(τ1s + 1)(τ2s + 1)
3τc

2τa + [τ1τ2 - (τ1 + τ2)τa](3τc - τa) - τc
3

(τc - τa)
3

3τc
2τa + [τ1τ2 - (τ1 + τ2)τa](3τc - τa) - τc

3

τ1τ2 - (τ1 + τ2 - τa)τa

(τa - τ1 - τ2)τc
3 + 3τc

2τ1τ2 - τ1τ2τa(3τc - τa)

3τc
2τa + [τ1τ2 - (τ1 + τ2)τa](3τc - τa) - τc

3

a Cases A and C, (y
d)d

)
Kdse-θs

(τcs + 1)2
; cases B and D, (y

d)d
)

Kds(1 + θ
2
s)e-θs

(τcs + 1)3
; cases E, G, and H, (y

d)d
)

Kdse-θs

(τcs + 1)3
; cases F and I,

(y
d)d

)
Kds(τas + 1)

(τcs + 1)3
. b Kd ) τI/Kc.

(yd)d
)

Kdse-θs

(τcs + 1)3
(79)

Kc ) 1
K

(3τc + θ)(τ + θ)

(τc + θ)3
(80)

τI ) 3τc + θ (81)

τD )
3τc

2τ + 3τcτθ + τθ2 - τc
3

(3τc + θ)(τ + θ)
(82)

Kd ) K
(τc + θ)3

τ + θ
(83)

(yr)DS-d ≈ (τIτDs2 + τIs + 1)

(τcs + 1)3
e-θs (84)

IE ) ∫0

∞
[r(t) - y(t)] dt )

τI

Kc
(85)

IE ) Kd (86)
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loop response for disturbances is specified as

where (y/d)d is given in Table 1. Thus, the PI/PID
settings and the closed-loop responses for set-point
changes are the same as for the special case where Gd
) Gp.

Remark 5. The proposed PI tuning rules for integrat-
ing processes are equivalent to the IMC PI settings of
Chien and Fruehauf.1

3.4. Set-Point and Derivative Weighting. Equa-
tions 15 and 19 are conventional PI and PID controllers.
A more flexible control structure that includes set-point
weighting and derivative weighting is given by A° ström
and Hägglund4

where the set-point weighting coefficient b is bounded
by 0 e b e 1 and the derivative weighting coefficient c
is also bounded by 0 e c e 1. The overshoot for set-
point changes decreases with increasing b.

The controllers obtained for different values of b and
c respond to disturbances and measurement noise in the
same way as conventional PI/PID controllers, i.e., dif-
ferent values of b and c do not change the closed-loop
response for disturbances. Therefore, the same PI/PID
tuning rules developed here using the DS-d method are
also applicable for the modified PI/PID controller in eq
88. However, the set-point response does depend on the
values of b and c. If set-point weighting and derivative
weighting are used, the closed-loop transfer function for
set-point changes is given by

where Gc(s) is the conventional PID controller given by
eq 19.

4. Simulation Results

Several simulation examples are used to demonstrate
the proposed PI/PID tuning rules for the DS-d method.
In practice, the derivative weighting factor c is usually
set to zero to avoid a large derivative kick. Thus, in this
paper, c is chosen to be zero for all of the simulation
examples. Furthermore, the PID controller is imple-
mented in the widely used “parallel form”

The derivative filter parameter R is specified as R ) 0.1.
Other implementations of PID control, such as the series
form, are also widely used. The controller settings for
one form can easily be converted to other forms.3

For each example, the DS-d, DS, ZN, and/or some
other methods were used to design PI/PID controllers.
As mentioned in section 2.3, the DS and IMC methods
can provide identical PI/PID settings if the same closed-

loop transfer function is specified and the same ap-
proximation is used for time delay term. For some
process models, however, the IMC tuning rules are very
well-known. Thus, the IMC method was used instead
of the DS method for a few examples.

The following robustness and performance metrics
were used as evaluation criteria for the comparison of
the PI/PID controllers:

Robustness Metric. The peak value of the sensitiv-
ity function, MS,28 has been widely used as a measure
of system robustness. Recommended values of MS are
typically in the range of 1.2-2.0.29

To provide fair comparisons, the model-based control-
lers (DS-d, DS, and IMC) were tuned by adjusting τc so
that the MS values were very close. This tuning facili-
tated a comparison of controller performance for dis-
turbance and set-point changes for controllers that had
the same degree of robustness.

Performance Metrics. Two metrics were used to
evaluate controller performance. The integrated abso-
lute error (IAE) is defined as15

To evaluate the required control effort, the total varia-
tion (TV) of the manipulated input u was calculated

The total variation is a good measure of the “smooth-
ness” of a signal and should be as small as possible.30

4.1. Example 1. Consider the following model with
a step disturbance acting at the plant input31

The DS-d, IMC, and ZN methods were used to design
the PID controllers shown in Table 2. For the DS-d
method, a value of τc ) 1.2 was chosen so that MS )
1.94. To obtain a fair comparison, τc ) 0.85 was selected
for the IMC method so that MS ) 1.94.

The simulation results in Figure 2 and the IAE and
TV values in Table 2 indicate that the disturbance
response for the DS-d controller is much better and
faster than the IMC response, whereas the movements
of these two controller outputs are similar. The distur-
bance response of the ZN controller has a smaller peak
value but is more oscillatory than the DS-d response.
The set-point response of the DS-d controller is more
sluggish and has a larger overshoot than the IMC
controller. However, the overshoot for the DS-d control-
ler can be eliminated, without affecting the disturbance
response, by setting b ) 0.5. By comparing the responses
and the MS, IAE, and TV values of all three controllers,

(yd)d

/

) (yd)d

Gd

Gp
(87)

u(t) ) Kc([br(t) - y(t)] + 1
τI
∫0

t
[r(τ) - y(τ)] dτ +

τD
d[cr(t) - y(t)]

dt ) (88)

y
r

)
cτIτDs2 + bτIs + 1

τIτDs2 + τIs+1

Gp(s) Gc(s)

1 + Gp(s) Gc(s)
( Gsp(s) (89)

Gc(s) ) Kc(1 + 1
τIs

+
τDs

RτDs + 1) (90)

Table 2. PID Controller Settings for Example 1 (θ/τ )
0.01)

set point disturbance

tuning method Kc τI τD MS IAE TV IAE TV

DS-d (τc ) 1.2, b ) 1) 0.829 4.05 0.354 1.94 3.06 1.46 4.89 1.89
DS-d (τc ) 1.2, b ) 0.5) 0.829 4.05 0.354 1.94 2.19 0.82 4.89 1.89
IMC (τc ) 0.85) 0.744 100.5 0.498 1.94 1.88 1.10 84.4 1.59
ZN 0.948 1.99 0.498 2.30 3.52 2.82 3.22 3.06

IAE ( ∫0

∞| r(t) - y(t)| dt (91)

TV ( ∑
k)1

∞

|u(k+1) - u(k)| (92)

Gp(s) ) Gd(s) ) 100
100s + 1

e-s (93)
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it can be concluded that the DS-d controller provides
the best performance without using excessive control
effort.

4.2. Example 2. Consider a process is described by

The PI controller characteristics for the DS-d, DS, and
ZN controllers are shown in Table 3.

Unit step changes were introduced in the set point
(at t ) 0) and in the disturbance (at t ) 4 min). The
simulation results in Figure 3 indicate that the distur-
bance response of the DS-d PI controller is faster than
that of the DS PI controller and less oscillatory than
that of the ZN PI controller. The set-point response of
the DS-d PI controller exhibits overshoot, but it can be
reduced by setting b ) 0.5. These conclusions can be
confirmed by the IAE and TV values in Table 3.

Figure 4 shows the simulation results for the practical
situation where there are inequality constraints on the
manipulated variable u: -2 e u e 2. A comparison of
Figures 3 and 4 indicates that the initial set-point
responses of the DS-d (b ) 1), DS, and ZN PI controllers
were slower because of controller saturation. Also, the
oscillations for the DS and ZN PI controllers were
damped. The disturbance responses were not affected
because inequality constraints on u were not active.

Examples 1 and 2 demonstrate that the DS-d method
provides better performance than the DS and IMC
methods for processes with small θ/τ ratios. The follow-

Figure 2. Simulation results of PID controllers for example 1
(θ/τ ) 0.01). (a) Response to a unit step set-point change. (b)
Response to a unit step disturbance.

Table 3. PI Controller Settings for Example 2 (θ/τ ) 0.25)

set point disturbance

tuning method Kc τI MS IAE TV IAE TV

DS-d (τc ) 0.35, b ) 1) 2.30 0.662 1.88 0.635 3.64 0.288 1.54
DS-d (τc ) 0.35, b ) 0.5) 2.30 0.662 1.88 0.630 2.10 0.288 1.54
DS (τc ) 0.13) 2.63 1 1.90 0.532 3.80 0.37 1.40
ZN 3.12 0.763 2.37 0.632 6.63 0.244 2.02

Gp(s) ) Gd(s) ) e-0.25s

s + 1
(94)

Figure 3. Simulation results without u constraints for example
2 (θ/τ ) 0.25). (a) Controlled variable y. (b) Manipulated variable
u.

Figure 4. Simulation results with u constraints for example 2
(θ/τ ) 0.25). (a) Controlled variable y. (b) Manipulated variable u.
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ing example is used to illustrate how the proposed DS-d
method works for processes with larger θ/τ ratios.

4.3. Example 3. Different Values of the θ/τ Ratio.
Consider the process model

In this example, two values of θ/τ ratio are considered:
θ/τ ) 1 and θ/τ ) 5.

For θ/τ ) 1, PI and PID controllers were designed
using the DS-d, DS/IMC, and ZN methods. The control-
ler characteristics are shown in Tables 4 and 5. The
simulation results in Figures 5 and 6 indicate that the
PI and PID responses for the DS-d and DS/IMC methods
are very similar. The DS-d and DS/IMC controllers
provide better performance than the ZN controllers.

For the process with θ/τ ) 5, the DS-d, DS/IMC, and
ZN methods were used to design PI and PID controllers.
Luyben2 has used this large-time-delay example to

compare the IMC, Ciancone-Marlin (CM),34 and ZN
methods. Consequently, the CM PI and PID settings
were also considered for comparison. The CM tuning
rules were derived using an optimization procedure that
incorporates considerations of performance, robustness,
and saturation of the manipulated variable. The CM
tuning rules are valid only for first-order plus time delay
processes and are presented graphically.34

The controller characteristics are given in Tables 6
and 7. The responses to unit step changes in the set
point and disturbance are shown in Figures 7 and 8.
The DS-d and DS PI controllers give the fastest PI
responses with small overshoots that are very similar.
The responses of the ZN PI controller are very sluggish.
The CM PI controller provides the best performance
among all four PI controllers. For the PID controllers,
the responses of the DS-d, IMC, and CM controllers are
relatively close. The ZN PID controller gives very erratic

Figure 5. Simulation results of PI controllers for example 3 (θ/τ
) 1).

Figure 6. Simulation results of PID controllers for example 3
(θ/τ ) 1).

Table 4. PI Controller Settings for Example 3 (θ/τ ) 1)

set point disturbance

tuning method Kc τI MS IAE TV IAE TV

DS-d (τc ) 0.8, b ) 1) 0.60 0.98 1.80 2.13 1.09 1.80 1.30
DS-d (τc ) 0.8, b ) 0.5) 0.60 0.98 1.80 2.34 1.09 1.80 1.30
DS (τc ) 0.62) 0.62 1.00 1.81 2.11 1.09 1.80 1.30
ZN 1.02 2.58 2.05 2.52 1.62 2.50 1.45

Table 5. PID Controller Settings for Example 3 (θ/τ ) 1)

set point disturbance

tuning method Kc τI τD MS IAE TV IAE TV

DS-d (τc ) 0.75, b ) 1) 1.11 1.45 0.317 1.92 1.68 2.18 1.30 1.46
DS-d (τc ) 0.75, b ) 0.7) 1.11 1.45 0.317 1.92 1.74 1.70 1.30 1.46
IMC (τc ) 0.85) 1.11 1.50 0.333 1.94 1.65 2.21 1.35 1.51
ZN 1.36 1.55 0.387 2.59 1.81 4.46 1.16 2.79

Gp(s) ) Gd(s) ) e-θs

s + 1
(95)

Figure 7. Simulation results of PI controllers for example 3 (θ/τ
) 5).

Figure 8. Simulation results of PID controllers for example 3
(θ/τ ) 5).

Table 6. PI Controller Settings for Example 3 (θ/τ ) 5)

set point disturbance

tuning method Kc τI MS IAE TV IAE TV

DS-d (τc ) 1.9) 0.11 0.87 1.86 10.9 1.27 10.8 1.37
DS (τc ) 2.8) 0.13 1.00 1.86 10.6 1.24 10.5 1.36
CM 0.35 3.3 1.68 9.43 0.68 9.43 1.01
ZN 0.515 9.8 1.89 18.8 0.96 18.5 1.34

Table 7. PID Controller Settings for Example 3 (θ/τ ) 5)

set point disturbance

tuning method Kc τI τD MS IAE TV IAE TV

DS-d (τc ) 2.5) 0.4 2.86 0.313 1.86 7.69 0.939 7.39 1.18
IMC (τc ) 4.5) 0.5 3.5 0.714 1.87 7.38 1.28 6.99 1.48
CM 0.4 3.0 1.2 1.92 7.60 1.20 7.52 1.57
ZN 0.66 5.9 1.48 42.2 9.48 5.94 9.26 9.64
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responses that are not shown in the plot but can be
found in Luyben.2 Its MS value in Table 7 is extremely
large.

The results for these two θ/τ values illustrate that the
DS-d method provides better disturbance rejection than
the DS method for processes with small values of θ/τ.
As θ/τ becomes larger, the controller settings and the
closed-loop performance for the DS-d method become
closer to those for the conventional DS method.

4.4. Example 4. Effect of τc. The DS-d method has
a single tuning parameter, τc, that is directly related to
the speed of the closed-loop response. In this example,
the effect of τc is analyzed. Consider the general model

For three different values of θ/τ (0.25, 0.5, 1), DS-d PI
controller settings were calculated for different τc values.

Figure 9 shows the DS-d PI controller settings for
different values of τc. As τc increases, Kc decreases, and
the integral time, τI, increases if τc e 1 but decreases if
τc g 1. The symmetry of τI around τc ) τ is confirmed
by eq 36.

Similarly, for three different θ/τ values (0.25, 0.5,
0.75), the DS-d PID controller settings were calculated
for different τc values and are shown in Figure 10. As
τc increases, Kc decreases, while τI and τD first increase

and then decrease. If τc is very large, τI and τD become
negative. Thus, for this example, the upper bounds on
τc for positive Kc, τI, and τD values obtained from Figure
10 are

For θ/τ ) 0.25, the DS-d PID controllers were de-
signed for four values of τc (0.25, 0.3, 0.35, 0.4), and the

Figure 9. DS-d PI controller settings for different τc values
(example 4).

Gp(s) ) Gd(s) ) e-θs

s + 1
(96)

Figure 10. DS-d PID controller settings for different τc values
(example 4).

τc e 0.4 for θ/τ ) 0.25 (97)

τc e 0.7 for θ/τ ) 0.5 (98)

τc e 0.935 for θ/τ ) 0.75 (99)
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corresponding simulation results are shown in Figure
11. The simulation results demonstrate that the DS-d
controllers for smaller τc values provide disturbance
responses with smaller peaks and smaller IE values.

4.5. Example 5. Different Disturbance Time
Constants. In this example, a process described by the
same transfer function as in example 2

but disturbance transfer functions with different values
of τd is considered

PID controllers were designed using the DS-d, IMC, and
ZN methods and assuming that τd ) τ. The controller
characteristics are shown in Table 8. The DS-d control-
ler was modified for other values of τd by using eq 87.
After substituting the transfer functions for the process
and disturbance, the closed-loop transfer function for
the DS-d PID controller in eq 87 becomes

Thus, when τd/τ increases, the disturbance response of
the DS-d PID controller has a smaller peak value and
is more sluggish.

Because τd does not affect the set-point response, only
the disturbance responses were simulated. The simula-
tion results for four τd values (0.25, 0.5, 1, 2) shown in
Figure 12 confirm that DS-d controllers provide distur-
bance responses with smaller peak values but longer
settling times as τd/τ increases. For small τd/τ values,
the disturbance performance of the IMC controller is
better than that of the DS-d controller.

4.6. Example 6. Consider a second-order plus time
delay system described by Seborg et al.15

The DS-d, DS, and ZN methods were used to design PID
controllers, and the resulting controller settings are
shown in Table 9.

The simulation results for a unit step change in the
set point at t ) 0 min and a unit step disturbance at t
) 50 min are presented in Figure 13. The disturbance
response for the DS-d PID controller is fast and has a
small peak value, but the set-point response has an
overshoot. By using a set-point weighting factor of b )
0.5, the overshoot is eliminated. The set-point and
disturbance responses for the DS PID controller are
quite sluggish, whereas the ZN PID controller provides
very oscillatory responses. Again, the IAE and TV
values in Table 9 confirm that the DS-d controller
provides superior performance without using excessive
control efforts.

4.7. Example 7. Distillation Column Model. A
distillation column that separates a small amount of a
low-boiling material from the final product was consid-
ered by Chien and Fruehauf.1 The bottom level of the
distillation column is controlled by adjusting the steam
flow rate. The process model for the level control system
is an integrator with a time delay

The DS controller obtained from eq 12 has the form

Because the DS method results in a proportional-only
controller for the integrating process, only the DS-d
tuning methods was used to design PI controllers. Note
that the DS-d and IMC methods provide identical PI
tuning rules for this type of process model. The resulting
controller settings from the DS-d method are shown in
Table 10. The IMC PI controller settings with τc ) 8
used by Chien and Fruehauf1 are included in the table.
Furthermore, for integrator plus time delay processes,
Tyreus and Luyben35 have developed a design method
that yields the best PI settings attainable for a specified
degree of closed-loop damping. Their tuning rule can be
expressed in terms of the ultimate gain Ku and ultimate
frequency Pu as Kc ) Ku/3.22 and τI ) 2.2Pu. Thus, it is
a modified version of ZN tuning. The TL PI controller
settings35 are included in Table 10 for comparison.

The simulation results for a unit step change in the
set point (at t ) 0) and a 0.5 step disturbance (at t )
150 min) are shown in Figure 14. The disturbance
performance of the DS-d controller is good, but the set-
point response has a large overshoot that can be
eliminated by setting b ) 0.5. The IMC PI controller
designed by Chien and Fruehauf1 provides a faster
disturbance response than the DS-d method, but the set-
point response is too aggressive, as confirmed by the
large MS and TV values in Table 10. The use of set-
point weighting can reduce the large set-point overshoot
for the IMC controller, but it would not affect the
oscillatory nature of the response. The large MS value

Figure 11. DS-d PID controllers for different τc values and b )
1 (example 4, θ/τ ) 0.25).

Table 8. PID Controller Settings for Example 5 (θ/τ )
0.25)

tuning method Kc τI τD MS

DS-d (τc ) 0.26, b ) 1) 3.46 0.702 0.0887 1.89
DS-d (τc ) 0.26, b ) 0.5) 3.46 0.702 0.0887 1.89
IMC (τc ) 0.22) 3.26 1.13 0.111 1.90
ZN 4.16 0.458 0.115 2.37

Gp(s) ) Gd(s) ) 2e-s

(10s + 1)(5s + 1)
(103)

Gp(s) ) Gd(s) ) 0.2e-7.4s

s
(104)

Gc(s) ) 1
K(τc + θ)

(105)
Gp(s) ) e-0.25s

s + 1
(100)

Gd(s) ) e-0.25s

τds + 1
(101)

(yd)* ≈ 1.125s(s + 1)e-0.25s

(τds + 1)(τcs + 1)3
(102)
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indicates that the τc value used by Chien and Fruehauf1

is so small that the resulting system has poor robust-
ness. The responses of the TL PI controller are very
sluggish because of the large τI value.

4.8. Example 8. Level Control Problem. Consider
a level control problem given by Seborg et al.15 The
liquid level in a reboiler of a steam-heated distillation
column is to be controlled by adjusting the control valve

Figure 12. Disturbance responses for PID control and different τd values (example 5, θ/τ ) 0.25). (a) τd ) 0.25. (b) τd ) 0.5. (c) τd ) 1.
(d) τd ) 2.

Figure 13. Simulation results for example 6.

Table 9. PID Controller Settings for Example 6

set point disturbance

tuning method Kc τI τD MS IAE TV IAE TV

DS-d (τc ) 2.4, b ) 1) 6.3 7.60 2.10 1.87 5.59 13.3 1.19 2.10
DS-d (τc ) 2.4, b ) 0.5) 6.3 7.60 2.10 1.87 4.58 6.78 1.19 2.10
DS (τc ) 0.5) 5 15 3.33 1.92 6.25 11.7 3.03 2.34
ZN 4.72 5.83 1.46 2.27 8.41 12.9 1.74 2.77

Figure 14. Simulation results for example 7.

Table 10. PI Controller Settings for Example 7

set point disturbance

tuning method Kc τI MS IAE TV IAE TV

DS-d (τc ) 15, b ) 1) 0.373 37.4 1.94 27.1 0.675 50.1 0.932
DS-d (τc ) 15, b ) 0.5) 0.373 37.4 1.94 19.6 0.354 50.1 0.932
IMC (τc ) 8) 0.49 23 3.06 30.9 1.63 30.9 1.58
TL 0.33 64.7 1.67 28.4 0.455 93.2 0.742
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on the steam line. The process transfer function is given
by

The PID settings obtained from the DS-d, IMC, and ZN
methods are shown in Table 11.

The simulation results for a unit step change in the
set point at t ) 0 min and a unit step disturbance at t
) 50 min are presented in Figure 15. The disturbance
response for the DS-d PID controller is good, but the
set-point response has an overshoot. With a set-point
weighting factor set at b ) 0.5, the DS-d controller
provides a fast set-point response without overshoot.
The performance of the IMC PID controller is close to
that of the DS-d PID controller, which is confirmed by
the similar PID settings. The ZN controller produces
very oscillatory responses.

4.9. Example 9. Fourth-Order Process. Consider
a fourth-order process described by29,30

For high-order processes, the DS-d, DS, and IMC design
methods do not yield PI/PID controllers directly. Thus,
the model order must be reduced, or the resulting
controller must be approximated by a PI/PID controller.
Skogestad30 has proposed a simple method of ap-
proximating high-order models with low-order models.
He also derived modified IMC rules, which were named
“simple control” or “Skogestad IMC” (SIMC). For the
first-order model in eq 30, the PI controller obtained
from SIMC has the following parameters

For the second-order model in eq 67 with τ1 > τ2, the
SIMC method provides the following rules for PID
controllers with the series structure

Using Skogestad’s approximation method, the fourth-
order process in eq 107 can be approximated as a first-
order plus time delay model

or as a second-order plus time delay model

Both models provide accurate approximations, but the
second-order model is more accurate.

PI controllers were designed using the approximate
first-order model and the DS-d, DS, and SIMC methods.
Values of τc ) 0.4 and 0.148 were selected for the DS-d
and DS methods, respectively, so that their MS values
were very close to the 1.59 value for the SIMC controller
reported by Skogestad.30 For τc ) 0.148, the same PI
controller settings were calculated using the DS and
SIMC methods. Also, the TL method,35 which was
discussed in example 7, was used to design a PI
controller for the process. The PI settings are shown in
Table 12.

PID controllers were designed using the approximate
second-order model and the DS-d, IMC, and SIMC
methods. The τc values for these methods were selected
to give MS values close to the 1.58 value of Table 13.
Because the tuning rules for the SIMC method are for
the series PID structure, these PID settings were
converted to the parallel structure, which was then used
for the simulation. Also, the ZN PID settings were
calculated for the fourth-order model. The PID controller
characteristics are shown in Table 13.

The simulation responses for a unit step change in
the set point at t ) 0 min and a step disturbance (d )
3) at t ) 5 min are given in Figures 16 and 17 for PI
and PID controllers, respectively. The values of MS, IAE,
and TV for all of these controllers are presented in
Tables 12 and 13. Figure 16 indicates that the distur-
bance response of the DS-d PI controller is better and
faster than the responses of the DS and SIMC control-
lers. The IAE values for the TL PI controller are smaller
than those of the other PI controllers, but its responses
are oscillatory and its MS and TV values are large. A

Table 11. PID Controller Settings for Example 8

set point disturbance

tuning method Kc τI τD MS IAE TV IAE TV

DS-d (τc ) 1.6, b ) 1) -1.25 5.3 1.45 1.94 3.42 3.39 4.33 2.86
DS-d (τc ) 1.6, b ) 0.5) -1.25 5.3 1.45 1.94 2.82 1.62 4.33 2.86
IMC (τc ) 1.25) -1.22 6.0 1.50 1.96 3.48 3.29 4.99 2.83
ZN -0.752 3.84 0.961 2.76 7.17 2.86 9.31 3.91

Figure 15. Simulation results for example 8.

Table 12. PI Controller Settings for Example 9

set point disturbance

tuning method Kc τI MS IAE TV IAE TV

DS-d (τc ) 0.4, b ) 1) 2.94 0.707 1.61 0.553 3.66 0.721 4.56
DS-d (τc ) 0.4, b ) 0.5) 2.94 0.707 1.61 0.594 2.08 0.721 4.56
DS (τc ) 0.148) 3.72 1.1 1.59 0.450 4.45 0.874 4.22
SIMC (τc ) 0.148) 3.72 1.1 1.59 0.450 4.45 0.874 4.22
TL 9.46 1.24 2.72 0.498 25.9 0.387 8.67

Table 13. PID Controller Settings for Example 9

set point disturbance

tuning method Kc τI τD MS IAE TV IAE TV

DS-d (τc ) 0.135, b ) 1) 22.4 0.415 0.106 1.58 0.276 38.0 0.056 5.56
DS-d (τc ) 0.135, b ) 0.5) 22.4 0.415 0.106 1.58 0.231 18.3 0.056 5.56
IMC (τc ) 0.025) 22.6 1.2 0.167 1.58 0.311 48.3 0.160 6.57
SIMC (τc ) 0.028) 21.8 1.22 0.18 1.58 0.333 48.7 0.168 6.85
ZN 18.1 0.281 0.07 2.38 0.423 52.0 0.070 9.03

Gp(s) ) Gd(s) )
-1.6(-0.5s + 1)

s(3s + 1)
(106)

Gp(s) ) Gd(s) )
1

(s + 1)(0.2s + 1)(0.04s + 1)(0.008s + 1)
(107)

Kc ) τ
K(τc + θ)

, τI ) min{τ, 4(τc + θ)} (108)

Kc )
τ1

K(τc + θ)
, τI ) min{τ1, 4(τc + θ)}, τD ) τ2

(109)

G1(s) ) e-0.148s

1.1s + 1
(110)

G2(s) ) e-0.028s

(s + 1)(0.22s + 1)
(111)
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comparison of the PID controllers in Figure 17 indicates
that the DS-d PID controller provides better and faster
disturbance responses than the other PID controllers.
The large overshoot for the set-point response of the
DS-d PID controller can be eliminated by setting b )
0.5. The superior performance of the DS-d PID controller
is also confirmed by the IAE and TV values in Table
13. Furthermore, a significant improvement was ob-
tained using PID control instead of PI control, because
this process is a dominant second-order process.

An alternative approach for high-order systems is to
design the DS-d controller using eq 25 and then reduce
the resulting high-order controller using a series expan-
sion22 or a frequency domain approximation.24-26 Be-
cause this approach is more complicated than Skoges-
tad’s model reduction approach, it was not applied here.

5. Conclusions

A new direct synthesis method for controller design
based on disturbance rejection (DS-d), rather than set-
point tracking, has been developed. By specifying the
desired closed-loop transfer function properly, PI/PID
controllers can be synthesized for widely used process
models such as first-order and second-order plus time
delay models and integrator plus time delay models. For
higher-order models, PID controllers can be derived by
approximating the high-order model with a low-order
model or by approximating the high-order controller
using either a series expansion or a frequency domain
approximation.

In the proposed DS-d design method, the closed-loop
time constant τc is the only design parameter, and it
has a straightforward relation to the disturbance rejec-

tion characteristics. Thus, the proposed design proce-
dure is simple and easy to implement. Although the PI/
PID controllers are designed for disturbance rejection,
the set-point responses are usually satisfactory and can
be independently tuned via a standard set-point weight-
ing factor or a set-point filter constant. The set-point
tuning does not affect the disturbance response.

Nine simulation examples have been used to compare
alternative design methods and to illustrate the effect
of τc. The simulation results demonstrate that the DS-d
method provides better disturbance performance than
standard DS and IMC methods and that satisfactory
responses to set-point changes can be obtained by simply
tuning the set-point weighting factor b. The DS-d
method furnishes a convenient and flexible design
method that provides good performance in terms of
disturbance rejection and set-point tracking.
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