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ABSTRACT

A novel, pattern classification approach is proposed for monitoring the performance of Model

Predictive Control (MPC) systems. Current MPC operation is compared to a simulated database

of closed-loop MPC system behavior, containing various combinations of disturbances and

plant changes. Neural network based pattern classifiers are used to classify the MPC perfor-

mance as normal or abnormal, and to determine whether an unusual disturbance or significant

plant change has occurred. If a plant change is detected, other classifiers are used to diagnose

the specific sub-model(s) that are no longer accurate. The proposed methodology is successfully

demonstrated in a detailed case study for the Wood-Berry distillation column model.
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1 Introduction

Model predictive control systems are widely used in the petrochemical and associated industries for two

main reasons: (1) the model-based controller can perform well for multiple input-multiple output (MIMO)

processes with complex dynamics, and (2) the controller accounts for inequality constraints on both input

and output variables.1,2 The ability of MPC to handle time-varying constraints allows processes to be op-

erated at the current economic optimum conditions.1,3 Furthermore, MPC can be used for relatively large

control problems; it is not uncommon to have the number of outputs, inputs, and measured disturbances

each be ten or more. There have been over 5500 industrial applications of MPC, mainly in refineries and

petrochemical plants, according to a recent survey.1

Excluding major computer failures, there are three main reasons why MPC performance can degrade:

a. Unusually large or severe disturbances

b. A significant change in the static or dynamic plant characteristics

c. An equipment or sensor problem.

Plant characteristics can vary due to different feedstocks or feed flow rates, changes in operating condi-

tions or product grades, process variations such as heat exchanger fouling and catalyst deactivation, weather

conditions, etc. If such a change occurs, the process model used in the control calculations may no longer

describe the plant behavior accurately, which can lead to poor MPC performance. Similarly, severe distur-

bances can cause MPC performance to degrade. The MPC control calculations are typically implemented

as setpoints for lower-level control loops. Thus, if a lower-level control loop changes due to controller

re-tuning, for example, the process model may no longer be accurate and MPC performance could degrade.

Considering the widespread application of MPC systems, it is somewhat surprising that the task of

monitoring their performance remains a largely unsolved problem. In this paper, the termMPC monitoring

means to perform an assessment of the current MPC system performance to determine whether or not it

is operating normally, and if not, to determine if there are unusual disturbances present and/or the process

behavior is no longer accurately described by the controller model. The goal of this research is to develop

a systematic and general MPC monitoring strategy that can cope with practical realities such as inequality

constraints. Consequently, the objective is to develop a monitoring strategy that can provide answers to the

following questions:
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1. Is the MPC performance normal or abnormal?

2. If it is abnormal, is the source of the problem one or more of the faults cited in items a - c?

Figure 1 illustrates these monitoring concepts in a simple tree that emphasizes the general approach proposed

in this paper — detecting abnormal MPC system behavior and diagnosing its general cause. Although

“Sensor Fault” and “Disturbance” are shown as distinct diagnoses, sensor fault detection is beyond the scope

of this paper, but has been considered elsewhere.4,5 Thus, the approach proposed in this paper is to group

sensor faults and unusual disturbances together. Because MPC controllers are inherently nonlinear due to

the inequality constraints, and usually of high dimension, a data-driven, pattern classification approach is

proposed. The current MPC system performance is classified by comparison with a simulated database

that contains a wide variety of closed-loop conditions. Feedforward, multi-layer perceptron (MLP) neural

networks (NNs) are used to perform the classifications. In principle, the proposed monitoring strategy is

applicable to both linear and nonlinear MPC systems. However, the scope of this paper is restricted to linear

MPC.

This paper is organized as follows. In Section 2 an overview of MPC is presented, followed by a review

of current multivariate controller monitoring and assessment methodologies in Section 3. Background ma-

terial on neural networks and the proposed monitoring methodology is presented in Section 4. This section

also describes the generation of the simulated database, the specific neural network configurations, and per-

formance measures used for pattern classification. The proposed MPC monitoring strategy is evaluated in

Section 5 for a simulated case study, the Wood-Berry distillation column model. Finally, the summary and

conclusions are presented in Section 6.

2 Model Predictive Control

Although each proprietary, commercial MPC system has its own method for calculating control moves and

handling constraints, a generic dynamic control move calculation is based on a constrained optimization.

Future predictions of the process output,ŷ, from a linear dynamic model are used to determine the optimal

control move sequence,∆u∗(k). The linear model can be formulated in many ways; commercial algorithms

often use step-response or ARX models, and state-space formulations are now becoming available.1,2 To

perform the on-line control calculation, the cost functionJ in Eq. (1) is minimized by calculating the next
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M optimal control moves, whereM is called thecontrol horizon, over aprediction horizonfrom P0 to

P . That is, the MPC problem is solved for the optimal control move sequence,∆u∗(k) = arg min
∆u

J , by

minimizing

J =
P∑

i=P0

‖ŷ(k + i|k)− r(k + i|k)‖2
Q(i) +

M−1∑
i=0

‖∆u(k + i|k)‖2
R(i) (1)

subject to inequality constraints:

u− ≤ u(k + j) ≤ u+, j = 0, 1, . . . ,M − 1 (2)

∆u− ≤ ∆u(k + j) ≤ ∆u+, j = 0, 1, . . . ,M − 1 (3)

y− ≤ ŷ(k + j) ≤ y+, j = P0, P0 + 1, . . . , P (4)

where the process output isy ∈ Rl, the manipulated input isu ∈ Rm, and∆u represents the nextM control

moves, starting at current timek. The output prediction,̂y(k + i|k), is made at timek for i steps ahead. The

setpoint isr ∈ Rl. Q(i) andR(i) are weighting matrices for the predicted control error and input moves.

The diagonal elements ofR(i) are sometimes referred to asmove suppression factors. The low and high

limits for x are represented byx− andx+. Also, ‖x‖2
S , xTSx. The control move calculation in Eqs. 1–4

can be formulated as a quadratic programming (QP) problem.2,1

The optimization is performed at each time step, but only thefirst input move in the optimal sequence,

∆u∗(k), is implemented. The entire optimization is then repeated at the next time step, resulting in a

receding horizonapproach.2 If the optimization problem is unconstrained, an analytical solution can be

obtained in which the control moves are based on error feedback with a constant controller gain matrix.2

In many commercial MPC systems, feedback is introduced by shifting the output predictions by a bias

equal to the prediction error at the previous time step. This approach is equivalent to assuming a step

disturbance at the output that is constant throughout the prediction horizon. This technique, referred to as

theDMC disturbance model,2,6 can give sluggish disturbance rejection in certain situations.7

The actual control move calculation in commercial MPC systems is typically a proprietary algorithm

that is not an actual QP technique. However, the QP formulation is popular in the MPC research literature

and is representative of the problems that commercial algorithms solve. In addition, most commercial MPC

systems include a steady-state optimization that resides in an intermediary position between the plant-wide
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optimization and the control move calculation of Eqs. 1–4. This steady-state optimizer is often a linear

program (LP) that uses the steady-state gains from the process model, and the constraints, to find feasible

“targets” (setpoints) fory, u, or both.2,1 The analysis of this target calculation layer for monitoring purposes

is beyond the scope of this paper, but is discussed by Kozub.8

3 Previous work

This section presents a brief overview of the literature related to MPC monitoring. General controller per-

formance assessment techniques are summarized, and methods specifically developed for MPC monitoring

and assessment are reviewed.

3.1 SISO controller performance assessment techniques

Monitoring and assessing control system performance has been widely considered for linear, single-input

single-output (SISO) systems. The most common techniques are the stochasticminimum variancemeth-

ods9,10 in which the current control performance is compared to a type of ideal performance, minimum vari-

ance control. These SISO techniques are relatively easy to use because they require only normal, closed-loop

operating data and knowledge of the process time delay. The method has also been extended to feedforward

systems and alternative benchmarks have been proposed.8−15

However, a SISO analysis can provide misleading results for MIMO processes due to process interac-

tions. For example, Huang and Shah16 consider an industrial paper machine header box example in which

the SISO minimum variance metric indicates good performance, but when MIMO minimum variance met-

rics are evaluated (see Section 3.2), the performance is actually poor. Furthermore, it has been argued that

the minimum variance benchmark may not even be desirable.10

3.2 MIMO controller performance assessment techniques

Monitoring and assessing performance of a MIMO system is much more involved than for SISO systems.

Minimum-variance performance assessment techniques have been extended to MIMO systems,16,17 but the

time-delay structure,i.e. the interactor matrix, must be known or estimated.16,18 This requirement alone

makes MIMO assessment more difficult than for the SISO case. In essence, MIMO minimum variance

assessment techniques compare the current performance to the best possible performance that would be
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achieved if a linear, MIMO feedback controller specifically designed for minimum variance was used. Thus,

it does not compare performance relative to the best possible multi-loop/decentralized control system per-

formance.19 Extensions and alternatives to the MIMO MV assessment methodology have been proposed,

including methods that simplify the determination of the interactor matrix,18 and techniques for using system

identification to evaluate controller performance.9

3.3 Monitoring techniques for MPC

All of the MIMO control monitoring techniques mentioned in the previous section have a major shortcoming

for MPC applications — they are not directly applicable to constrained control systems. Furthermore,

inequality constraints that vary with time are a distinguishing feature of practical MPC applications.1 It

is important to note that most assessment techniques specifically designed to account for these constraints

require a process model.9

Next, we consider monitoring strategies that have been proposed specifically for MPC. Tyler and Morari20

present a technique using qualitative propositional logic with quantitative fault models to diagnose faults or

indicate model error in an MPC system. Kesevan and Lee21 present a model-based methodology involving

statistical tests for detecting and diagnosing faults in MPC systems. Wan and Huang22 propose a measure

of the robust performance variation in a closed-loop system caused by model-plant mismatch (MPM). The

analysis is based on the maximum singular value of the generalized closed-loop error transfer function. A

data-driven approach for updating the controller model to reduce plant-model mismatch is presented by

Samyudiaet al.23 An expert-system approach is described by Leung and Romagnoli24 that indicates the

presence of the following operating conditions: invalid model, presence of a severe oscillation, rejection of

deterministic disturbances, or stochastic control operation (which is considered to be normal). Zhang and

Henson25 present a method for assessing constrained MPC performance. They develop a stochastic measure

IMPC that compares expected MPC performance to actual performance by performing a constrained MPC

simulation in parallel with the actual MPC operation. Kozub8 states that for monitoring a constrained MPC

system consisting of both a steady-state optimizer and a dynamic controller, the LP layer is crucial to the

analysis.

Some authors choose to apply the unconstrained minimum variance control benchmark to MPC systems,

arguing that although it is not designed for constrained systems, it nevertheless remains a tool that can be
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used to assess MPC system performance. For example, Kadali et al.,26 Vishnubhotla et al.,27 and Miller and

Huang28 apply minimum variance assessment to MPC systems. Haarsma and Nikolaou29 apply MIMO MV

assessment to an MPC-controlled, snack food process. They present an approach for the case of constrained

inputs that re-filters the interactor matrix to obtain one for the reduced dimension system of non-constrained

inputs. Hugo30 argues that control engineers are mainly interested in how well each individual output is held

to its setpoint/LP target, so that SISO MV techniques are appropriate for multivariate systems, although the

results are biased on account of the process interactions.

Huang and coworkers discuss model validation as one of several tools that can be combined to perform

MPC assessment.31,32,26 They present a general methodology for model validation in MPC systems based

on a two-model divergence algorithm that can detect process changes regardless of disturbance changes.33

This technique requires a significant amount of input excitation, but the authors propose that the required

excitation signal can be injected into the process automatically by the optimizer. Huang34 also presents

model-validation techniques for SISO and MIMO systems, based on thelocal approachdiscussed in Bas-

seville and Nikiforov.35

Patwardhan and Shah36 review fundamental limitations on controller performance due to hard con-

straints, using an Internal Model Control (IMC) framework. They also present results on how MPC per-

formance is affected by model uncertainty and process nonlinearity. A linear quadratic regulator (LQG)

benchmark for MPC performance has been proposed by Shah and coworkers.37,36,16 They argue that the

LQG benchmark is appropriate for comparison with MPC because a LQG controller can be designed to

weight both output error and input moves in analogy with MPC. They have also proposed two benchmarks

based on the objective function in the MPC optimization, a design case benchmark, and a historical bench-

mark.37,36,38 These historical and design benchmarks are applied in a novel framework by Schäfer and

Çinar39 to perform MPC system fault detection and diagnosis.

Ko and Edgar40 suggest comparing the output variances achieved by unconstrained and constrained

minimum variance controllers (in simulation) to the actual output variance of the MPC system. The uncon-

strained minimum output variance is calculated by simulating a finite-time, moving horizon minimum vari-

ance controller,40 or by other MIMO MV methods.41,16 The numerical value of the constrained minimum

output variance is found by simulating a constrained, optimization-based controller designed for minimum

output variance, using optimal disturbance prediction and a disturbance model identified from the process
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data.

3.4 Commercial products

MPC system suppliers offer a few MPC assessment tools.AspenWatchis a performance monitoring tool

for DMCplus that offers “statistical performance measures” relative to an “optimum standard”, a “design

standard”, and “previous operating experience”.42 Honeywell’sPerformance Monitorfor its RMPCTmodel

predictive control systems calculates and summarizes several simple statistics of controller operation.43

4 Proposed methodology

The proposed methodology for monitoring MPC systems is based on pattern classification using neural

networks. It consists of the following steps:

1. Select an appropriate set of current operating data to be analyzed (the test data).

2. Create a database consisting of windows of simulated, closed-loop system responses.

3. Train the NNs for pattern classification.

4. Classify the test data.

The individual steps will now be discussed in greater detail. In Step 1 a set of test data is selected by the

user for MPC performance evaluation. In Step 2 the simulated database is created after the test data have

been selected. Thus, the proposed methodology is implemented as an “on-demand” approach. A database of

simulated, closed-loop, MPC responses is created for a wide variety of disturbances and simulated process

changes (to introducemodel-plant mismatch, or MPM) but thesamesetpoint trajectories, measured distur-

bances, and constraint limits that are present in the test data are also used in the simulations. The generation

of the simulated database will be discussed in more detail in Section 4.1.

In order to develop effective pattern classifiers, two independent databases are created: one for training

and one for validation. The training database is used to train several pattern classification NNs to distinguish

between normal operation, unusual disturbances, and significant plant changes. The inputs to the NNs are

scalarfeaturesextracted from the data. These features will be discussed in more detail in Section 4.2.
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Once trained, all networks are evaluated on the validation database, and the network with the best validation

performance is used for subsequent evaluations of the MPC performance.

The motivation for using the actual setpoint, measured disturbance, and constraint information in both

the training and validation databases is as follows. In our experience, the pattern classification approach has

a much higher degree of accuracy if the closed-loop database is simulated for conditions that are as close as

possible to the conditions present in the test data.

In designing the simulated database and performing the subsequent classifications of MPC performance,

four classes of operation are proposed:

1. Normal. No abnormal disturbance or abnormal model-plant mismatch is present (labeledN ).

2. Disturbance. An abnormal (sustained or large magnitude) disturbance occurs (labeledD).

3. Plant Change. The plant behavior differs significantly from that described by the process model (labeled

P ).

4. Disturbance and Plant Change.Both an abnormal disturbance and a significant model-plant mismatch

are present (labeledP + D).

By definition, these four classes are mutually exclusive. Thus, for any set of test data, the process operation

can only belong to one of these four classes. We have evaluated several alternative classification strategies:

Method 1. Three individual classifiers. In this method, three independent classifiers are used to answer

the following yes/no questions:

i. Is the operation normal or abnormal? (theABclassifier)

ii. Is an abnormal disturbance present? (theDIST classifier)

iii. Is there significant model-plant mismatch? (theMPM classifier)

Method 2. A single four-class classifier.A single NN classifier indicates membership in one of the four

operating classes discussed above.

Method 3. An exclusion strategy.The exclusion strategy is based on the results of two NNs, theAB and

DIST classifiers. It provides a novel detection scheme for plant changes.
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Method 4. A combination approach. In order to provide an alternative technique for detecting plant changes,

the AB classifier can be used in combination with theMPM classifier. A “Plant change”/“No plant

change” classification is made only if the two classifiers agree.

When abnormal MPC system performance has been detected, it is desirable to determine whether the

root cause is model-plant mismatch. In particular, we would like to be able to detect plant changes while

having a low false alarm rate. It is very important to minimize the false alarm rate for the following reason:

if the monitoring strategy incorrectly concludes that the plant model is inaccurate, expensive and time-

consuming plant tests to re-identify could be performed unnecessarily.

For the simulation results of Section 5.2, theAB andDIST networks are very accurate, while theMPM

network is less accurate. These considerations motivated the development of Method 3, theexclusion strat-

egy, which is illustrated in Figure 2. In this novel approach, only theAB andDIST networks are used to

detect plant changes; theMPM network is not used. The current operating period is classified as a plant

change if theAB network indicates “Abnormal” and theDIST network indicates “No Disturbance”. The

advantage of this exclusion strategy is more accurate classification of plant change conditions,i.e. a lower

false alarm rate. A minor disadvantage is that operating periods that exhibit a simultaneous disturbance

and plant change may be classified as either “Disturbance” or “Plant Change”, rather than “Plant Change

+ Disturbance”. Furthermore, if the plant change persists, and the abnormal disturbance eventually dies

out, a “plant change only” situation would then exist that can be readily detected using the exclusion strat-

egy. Thus, the ability of Method 3 to detect a plant change during an operating period with a simultaneous

disturbance is considered to be less important than minimizing the false alarm rate for MPM detection.

Thecombination approachof Method 4 is an alternative classification method for detecting plant changes.

As shown in Figure 3, Method 4 classifies the current test data as “plant change” (P ) only if the AB and

MPM networks agree. Thus, the only allowable classifications are “Normal” and “Plant Change”. The ad-

vantage of this approach is that it will detect plant changes even when a significant disturbance is present,

but it tends to have a higher false alarm rate because of the lower performance of theMPM network.

Performance metrics. In order to evaluate the performance of the proposed MPC monitoring techniques,

it is informative to consider a test database with known characteristics. The followingefficiencyand error

measures are proposed:
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ηi , efficiency= N1,i

NT,i
× 100%, the percentage of datasets that are correctly classified (5)

wherei = {Overall,N,D, P, P + D}. N1,i is the number of typei correctly classified of the

total number of typei in the database,NT,i. ‘Overall’ refers to the performance for all four

classes of operation.

E1 , the percentage of ‘Type I’ errors (the null hypothesisH0 is rejected when actually true).

E2 , the percentage of ‘Type II’ errors (the null hypothesisH0 is not rejected when it is false).

For the individual classification networks, the null hypothesis is specified to be the “normal” condition. For

example, the null hypothesis for theMPM classifier is:

H0: No significant model-plant mismatch exists.

For the four-output network, each output has its own null hypothesis. Thus, for theith output,i = {N,D, P, P + D},

the null hypothesis is:

H0i: The current dataset belongs to classi.

To illustrate the Type I and Type II error calculations for the individual network classifiers, define

e = t− o, wheret represents the target ando represents the network output. Botht and o are binary

variables where 0 denotes the “normal” condition, and 1 represents the “abnormal” condition. Thus, a Type

I error occurs whene = −1, and a Type II error whene = +1. TheE1 andE2 performance measures are

based on all of the datasets.

The Type I and Type II errors for the four-output network are formulated differently. Definee, t, ando

as four-element vectors, where each element is a binary variable for which 0 denotes the normal condition.

Suppose that a test dataset is from classi. A Type I error for outputi occurs when eithere(i) = +1, or

whene(i) = 0 ando(j) = 1 for any j 6= i. That is, a Type I error occurs when outputi is incorrect, or

when another output (j 6= i) incorrectly classifies the test data from classi as being from classj. Thus, the

E1 measure does not double count errors with respect to the different classes. A Type II error for outputj

occurs whene(j) = −1, when outputj mislabels test data that belongs to classi as classj. Thus, theE2

measure for each output is not affected by the predicted classification of the other outputs. Double counting

can occur.

Additional performance metrics are defined for the exclusion strategy. Twoaccuracymeasures are:
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p(P ) , the percentage of datasets classified asP that actually belong to classP .

p(P, P + D) , the percentage of datasets classified asP that actually belong to eitherP or P + D.

Two false alarm rates are defined that are appropriate for the exclusion strategy:

FAR(P ) , 100%− p(P ) (6)

FAR(P, P + D) , 100%− p(P, P + D) (7)

False alarm rateFAR(P ) considers a ‘P ’ classification correct only if the test data actually belong to class

P . For the second measure,FAR(P, P + D), if the exclusion strategy labels aP + D condition asP , this

classification is considered correct and thus does not contribute to the false alarm rate.

4.1 Design of the simulated database

The process model used in the MPC calculations obviously plays a key role in the proposed MPC monitoring

methodology. This model is used to simulate the closed-loop behavior of the MPC system for a wide variety

of disturbances and process changes. The details of the database generation will now be discussed.

The MPC monitoring strategy is based on classifying a window of closed-loop data from an operating

period of interest, thetest data. The window length is selected to be the longest settling time for the process

outputs in order to allow all transients to settle out for reasonable controller tuning. The simulated data

windows used for training the classifiers should have the same setpoint trajectories, measured disturbances,

and constraint limits as the selected test data.

In general, the disturbance models for unmeasured disturbances are not known. Thus for MPC mon-

itoring, it is important to simulate a wide variety of disturbances with random magnitudes and random

start times. Two general types of unknown disturbances are introduced into the simulated data,output dis-

turbancesand input disturbances. For the case study of Section 5, the output disturbances include steps,

ramps, sinusoids, and stochastic sequences (white noise filtered by various transfer functions). They were

generated independently for each output, with the type and magnitude of the disturbance chosen randomly.

It is advantageous to note that step and ramp output disturbances are equivalent to sensor biases and sensor

drifts. Thus, the proposed methodology can be extended to include detection and diagnosis of faulty sensors.

Input disturbances are introduced as proxies for unknown disturbances that tend to be filtered by the process
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itself. Steps, ramps, sinusoids, and stochastic sequences were introduced independently at each input as the

basis for input disturbances.

In this paper, the choice of disturbance type (input or output disturbance for each variable), its magni-

tude, the time of occurrence in the data window, and other parameters (e.g.ramp rate, oscillation frequency)

are chosen randomly from uniform distributions. This approach helps ensure that a very wide range of

possible disturbance effects are included in the simulated database. The basic idea is to choose generic

disturbance types that have at least some of the characteristics of the actual disturbances.

For MPC monitoring, a critical issue is the ability to detect when the model-plant mismatch has become

unusually large. In the proposed methodology, it is assumed that a physical model of the process is not avail-

able and the monitoring is based on the empirical, linear model used in the MPC calculations. Plant changes

are included in the simulated database by perturbing the nominal model and using it as the simulated plant.

The MPC calculations still use the nominal model. If the degree of model inaccuracy can be characterized,

training data with this amount of model variability could be considered as “normal” data, for purposes of

training the NN classifiers.

The way in which the model is perturbed depends on the structure of the model. For transfer function

models, the gains, time delays, and time constants are varied. For large MPC problems, even if the plant

model consists of first-order plus time delay (FOPTD) transfer functions, it is not feasible to evaluate all

possible combinations of model parameter changes. For example, consider a2 × 2 process model that

consists of FOPTD sub-models. If only three values of each model parameter are considered, the total

number of combinations for the 12 parameters is
∑3·12

r=1

(
3·12

r

)
∼ O(1010). Thus, a more tractable method

than simple enumeration is necessary.

A proposed selection procedure using random parameter selection and random magnitude perturbations

for the case study in Section 5 is summarized in the Appendix. By requiring the MPM detection and

diagnosis NNs to be able to detect random, arbitrary model parameter changes, the simulated problem

may actually be more difficult than an actual application. For example, time delays and time constants

often change with flow rates, so that these parameter changes are correlated rather than independent. It

is reasonable to expect correlated parameter changes in actual applications, which is encouraging for a

monitoring strategy that performs well in detecting arbitrary and random plant changes.

To complete the database design, the total amount of training data, and the relative amounts ofN , D, P ,
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andP + D datasets must be specified. The total number of datasets in the training database can be selected

using heuristic arguments from the neural network literature. For example, a general heuristic states that the

total number of training sets,Nt, should be related to the number of free parameters (weights) of the neural

network,wtot, and the desired misclassification rate,ε, by the expression:44

Nt ∼ O
(wtot

ε

)
(8)

This expression agrees with intuition for curve fitting, which suggests thatNt > 2wtot to prevent overfitting.

After choosingNt, the allocation of the training data for the four independent operating classes must

be specified. The authors have evaluated several alternative allocations.45 For simplicity, each of the four

independent operating classes was allottedNt/4 datasets in the case study of Section 5.

4.2 Design and training of NN classifiers

Multi-layer perceptron. A multi-layer perceptron (MLP) is a type of feedforward artificial neural network

that consists of an input and output layer, with one or more “hidden” layers between the input and output

layers. The hidden and output layers contain neurons that perform a mathematical operation on a vector

input to generate a scalar output.44,46 A generic MLP NN is illustrated in Figure 4 where there are P inputs,

H hidden neurons, and R outputs. The features (inputs) are indicated by ‘f’;‘g’ represents the hidden layer

neuron output values, ‘o’ represents the network outputs, and ‘w’ and ‘v’ represent network weights. The

bias inputs have been omitted in Figure 4. For the proposed pattern classification approach, MLP NNs are

used with a threshold function (i.e. “rounding”) that is applied to the outputs to give a binary (0 or 1) value

to indicate a “No” or “Yes” decision. It is possible to use the actual output value (without rounding) as a

measure of confidence of the classification, but this paper does not consider this option.

Pattern classification. As discussed in Section 4, several classification methods are proposed. Either

a single four-class classifier, or a set of three individual classifiers can be used to classify MPC system

performance. The four-class classifier consists of a single neural network with four outputs, one output for

each of the independent operating classes described in Section 4. That is, the four outputs correspond to

(N , D, P , P + D). For example, if the second output has a value of 0.8, it is rounded to 1 and the test data

being analyzed are classified as belonging to the “Disturbance” class. Because the four operating classes are

mutually exclusive, a window of test data can belong toonlyone class. Thus, if the four-output network has
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more than one output with a value of 1, or if all four outputs are 0’s, this classification is inconsistent and

should be discarded. Additionally, the relative output values (not the rounded values) provide an estimate

of the degree of confidence we have in the most likely classification, with respect to the other potential

classifications. This approach using independent outputs is often formalized in the neural network-based

fault detection literature, for example, with Bayesian classifiers, because it can givea posterioriprobability

estimates of the occurrence of each independent class.47,48

For Method 1 three independent classifiers,AB, DIST, andMPM, are implemented as three, single-

output networks. For each network, the output is rounded to provide a “Yes” (1) or a “No” (0) answer to one

of the three classification questions presented in Section 4.

To diagnose the specific models that are inaccurate after a “plant change” situation has been detected,

a similar approach can be used. For a system withl inputs andm outputs, the process model consists of

n = l ×m individual, SISO sub-models. For smaller MPC systems,n single-output networks can be used

to diagnose which sub-models are no longer accurate. In this case, a ‘0’ indicates that a model is accurate

and a ‘1’ indicates that it is inaccurate.

NN inputs. The inputs to the neural networks are features that have been extracted from the window

of test data being considered. These features should be metrics that effectively characterize the closed-

loop operation. The following variables are used as the basis for the features: the manipulated inputs

and controlled outputs, the differenced inputs, the control errors (CE), and the one-step prediction errors

(residuals),

εi(k + 1) = yi(k + 1)− ŷi(k + 1|k) (i = 1, 2, . . . , l) (9)

where ŷi(k + 1|k) is the one-step ahead prediction made at timek. The features are grouped into the

categories shown in Table 1 and are discussed below. For the case study, only sub-sets of these features are

selected to be NN inputs.

Basic statistics. This category of features consists of basic statistics such as sample means, standard

deviations, and total variations49 (TV ), whereTV (x) ,
∑∞

i=1 |xi+1 − xi|.

Correlation coefficients. In addition to basic statistics, it is reasonable to include features that charac-

terize the dynamic behavior of the process. For this reason, autocorrelation (ACF) and partial autocorrelation

(PACF) coefficients50 are included in the feature list. ACF and PACF coefficients also have a useful interpre-
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tation. For an autoregressive (AR) process, the ACF decays exponentially (it may also oscillate depending

on the AR parameters), while the PACF becomes zero for lags greater than or equal to the order of the AR

process. For a moving average (MA) process, the ACF is identically zero for lags greater than or equal to the

MA order, while the PACF decreases exponentially. For an ARMA process, mixed behavior occurs.50 For

most of the simulations in the case study, the coefficients quickly decayed to within the confidence bounds

with increasing lag. Consequently, only coefficients for the first few lags are included. Kozub and Garcia51

have also used residuals, differenced inputs, and autocorrelation measures for SISO controller performance

assessment.

Another measure of dynamic behavior is the variogram,V z
ij , whereV z

ij , var(zt+i − zt)/var(zt+j − zt).

It is the ratio of the variances ofi-step differences in the data toj-step differences. For example,V z
i1 is

equivalent to the autocorrelation. The variogram has the benefit that it can be used to analyze non-stationary

processes.52

Classical performance metrics. Traditional metrics for setpoint changes, such as rise time, settling

time, and overshoot can also be used as features. The rise time is defined as the time from the setpoint

change until the output first reaches its setpoint; the settling time is the time required for the output to enter

and remain within a±10% band about the setpoint.

To summarize, the potential feature set includes the following items: sample means and standard de-

viations, and total variations; traditional performance measures such as rise time (tr), settling time (tset),

integral of absolute error (IAE), and overshoot (OS); and statistics such as sample autocorrelation (ρ̂k) and

partial autocorrelation (̂φkk) coefficients and variogram measuresV z
ij .

It is important to scale NN inputs to the same range so that relatively smaller inputs do not become

overshadowed by larger inputs. In this paper, the features that are used as inputs are first ‘standardized’ to

zero mean and unit variance. Then, the inputs are scaled betweenε and1− ε, whereε = 0.15. The scaling

is based on Eq. 10, wherẽxi is the scaled featurei, andx̂i is the standardized feature, giving a minimum

scaled feature value of0.15 and a maximum of0.85.

x̃i = (1− 2ε) ln
[

x̂i − x̂i,min

x̂i,max − x̂i,min
+ 1

]
/ ln[2] + ε (10)

This specific form of log scaling helps spread out small values that are disproportionately close compared

to large values.46
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Selection of NN inputs. There are many ways that NN inputs can be chosen from features. A straightfor-

ward approach is to first collect features into reasonable groups that would effectively describe the behavior

of a window of test data. Then, the classification ability of each input group would be evaluated based on its

performance for the validation database. Consequently, many different groups of the features considered in

the previous section were evaluated as NN input variables. In the case study (Section 5.2), many of the input

groups resulted in similar performance. An alternative approach would be to develop an influence metric

for the inputs, train either linear perceptrons or MLPs on all input features, then select thek most influential

inputs.46 However, the disadvantage for the MLP case would be the significant increase in training time due

to many more inputs and hidden neurons (see below).

Neural network design. In this paper, the NNs employ tan-sigmoidal activation functions in the hidden

layer and log-sigmoidal activation functions in the output layer. Log-sigmoidal functions could also be used

in the hidden layer, but preliminary evaluations resulted in a slight increase in performance using the tan-

sigmoidal functions. In order to specify the number of neurons in the hidden layer,H, three heuristic design

methods were considered:46

1. H = K

2. H =
√

PR

3. H = 1.7095 log2(2K)

whereP is the number of network inputs,R is the number of network outputs, andK is the number of

distinct target patterns that the network must learn. One network was designed for each of the three values

of H.

It is well known that neural networks trained by backpropagation can become trapped in local min-

ima.44 Thus, for every combination of input group and network design method, five individual classification

networks were trained using the same training database. Each of these networks had randomized initial

weights. The five resulting networks were compared using the training database, and the best NN out of

the five was chosen for further evaluation, for each input group-network design combination. This training

strategy helped reduce the likelihood of selecting a poorly performing network that was trapped in a local

minimum. These “best networks”, one for each input group-NN design combination, were then evaluated
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on the validation database. The best performing NN on the validation database (i.e., a specific input group

and NN design) was then chosen to be the classification network for subsequent applications.

5 Case Study: Wood-Berry distillation model

The Wood-Berry model is a well-known2×2 transfer function model of a pilot-plant distillation column for

a methanol-water mixture.53 The output variables are the distillate and bottoms compositions,xD andxB

[wt % methanol]. They are controlled by manipulating the reflux and steam flow rates,R andS [lb/min].

The feed flow rate,F , is an unmeasured disturbance variable. The column model53,6 is shown in Eq. 11.xD(s)

xB(s)

 =


12.8e−s

16.7s + 1
−18.9e−3s

21.0s + 1

6.6e−7s

10.9 + 1
−19.4e−3s

14.4s + 1


R(s)

S(s)

 +


3.8e−8s

14.9s + 1

4.9e−3s

13.2s + 1

F (s) (11)

This model is a classical example that has been used in many previous papers concerned with process

control, monitoring, and identification.

5.1 Generation of the simulated databases

In this section, a detailed description of the simulated case study is presented.

MPC tuning parameters. The MPC controller was tuned by trial-and-error to give a reasonably fast

setpoint response. The prediction horizon in Eq. 1 wasP = 30, with P0 = 0, and the control horizon was

M = 5. Weighting matricesR andQ were chosen to be identity matrices. The control execution period

was∆t = 1 min. The standard “DMC” constant output disturbance approach was used to update the model

predictions.

For the purpose of this case study, unconstrained MPC was employed in order to reduce the time required

to create the simulated databases for numerous case studies (many more than the ones discussed here).

However, it is important to note that the proposed methodology is also directly applicable to constrained

MPC.

Training and validation databases. For the purpose of verifying the reproducibility of the results, the

methodology was evaluated by repeating the monitoring procedure with five training databases and separate
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validation and test databases. Each dataset in a database was based on the same setpoint change,xsp
D = −1

at t = 0, which was chosen becausexD is the faster responding of the two outputs. Based on process

settling times, all simulations used data windows that were 100 minutes long. The individual datasets could

also include disturbances and/or plant changes, as described below. Plant changes were created based on

the procedure presented in the Appendix, in which the choices of the model(s) and the associated model

parameter(s) to be perturbed were made randomly. The perturbation magnitudes for the model parameters

were chosen randomly from the range±[12.5 – 37.5] % of the nominal values.

The training and validation data were created using the output and input disturbance approach discussed

in Section 4.1. The type of output and input disturbances were chosen randomly for each output from the

following set of disturbance types: step, ramp, sinusoidal, and stochastic. (Two stochastic transfer functions

were used for training, a third one for validation.) The step disturbances occurred at random starting times

betweent = 25 min andt = 75 min, while the ramps began between 25 and 50 min. The ramp duration was

randomly specified to be between25 and50 min. The amplitudes of the output disturbances were chosen

randomly in the range±[0.25− 3.25] wt%. The magnitudes of the input disturbances were adjusted so that

the open-loop changes in the outputs were approximately the same as for the output disturbances.

For stochastic output and input disturbances, the magnitude of the white noise sequence used to gen-

erate the stochastic disturbance and the magnitude of the resulting stochastic disturbance (the output from

the stochastic disturbance transfer function) were scaled to provide approximately the same effects on the

outputs as the deterministic disturbances. Two discrete transfer functions were used to create stochastic

disturbances in the training data,

Gd1(z) =
1

z − 0.95
(12)

and

Gd2(z) =
2z − 0.4
z − 0.8

(13)

A third transfer function was used for the validation data:

Gd3(z) =
1

(z − 0.9)(z − 0.5)
(14)

For the sinusoidal disturbances, the frequency was a random number uniformly distributed in the interval

[0.03− 1.03]. Gaussian measurement noise with an approximate standard deviation of0.05 wt% was added

to each output, and Gaussian process noise was added to the two process inputs (R, S) with approximate
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standard deviations of0.006 and0.003, respectively. These numerical values gave approximately the same

standard deviation at the outputs in open-loop as the measurement noise did. These database design param-

eters and the number of datasets for each type of operating condition are summarized in Tables 2 and 3. The

total amount of training data,Nt = 2000, was chosen to exceed the guideline in Eq. (8), withε = 0.1 and

wtot = 131 network weights and biases, givingNt = 1310. The number of validation datasets, 1000, was

chosen arbitrarily to be less than the number of training datasets.

Test database. For the simulated case study, the test database takes the place of actual process data. In

order to make the evaluation of the test database more interesting, the unmeasured disturbances were chosen

to be feed flow rate disturbances generated using the actual disturbance model in Eq. 11. This model had

been ignored in creating the training and validation data. For the feed disturbances, steps, ramps, sinusoids,

and stochastic sequences were used. The ranges of disturbance starting times were the same as for the

training and validation data, as were the sinusoid frequencies. The disturbance magnitude was in the range

±[12.5 − 37.5]% of the nominal feed flow rate (2.45 lb/min). These parameter values were again chosen

randomly. For the stochastic sequences, a fourth disturbance transfer function,

Gd4(z) =
0.9z − 0.00894

z − 0.9802
(15)

was used. Plant changes were introduced randomly in the same manner as for the training and validation

databases. Tables 2 and 3 summarize this information, along with the relative amounts of each operating

condition.

NN input groups. The NN inputs were selected from a total of 100 features that were based on the

categories in Table 1. The inputs were scaled using the log-scaling technique discussed in Section 4.2.

Table 4 describes the fourteen different groups of inputs that were used to train the neural networks. The

input groups were chosen to investigate how different types of features perform relative to one another, for

example, how static features, such as means and standard deviations, compare to dynamic features, such

as correlation coefficients. The best performing input groups were selected based on performance for the

validation database.

All simulations were performed in MATLAB using the MPC Toolbox.6 In the case study, the MATLAB

Signal Processing Toolbox54 function, xcorr , was used to calculate the ACF coefficient estimates. The
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coefficients from this function differ somewhat from the standard sample autocorrelation function50 because

mean values are not removed. Consequently, these estimates tend to decay more slowly, but at small lags,

are similar to the standard estimates. The neural networks were created using the MATLAB Neural Network

Toolbox.55 The networks were trained for100 epochs using batch training and the Levenberg-Marquardt

algorithm.55 The results presented are averages for five different networks trained using five independent

training databases.

5.2 Results

Detailed results for the proposed MPC monitoring strategy are presented in this section.

Input variable group. The classification results (η values) for each NN input group and the test database

are presented in Table 5. The performance of many of the input groups is about the same, suggesting that

the choice of which features to use as inputs is not as critical a decision, as one might anticipatea priori.

TheAB andDIST classification networks perform very well. TheMPM network performs reasonably well,

considering that detecting plant changes is a very difficult problem. The small standard deviations indicate

that the results are consistent over the five independently trained networks.

Individual classification networks. Next, we consider average results for the five trials of independently

trained individual classification networks. For each trial, the best performing input group-network design

combination for the validation database was chosen for evaluation on the test database. Thus, each trial

could have a different input group-network design combination. The results for single-output networks are

summarized in Table 6, where the best performing input groups and network design methods are identified.

The overall results are consistent with the results in the previous section: theAB network is98.4% correct,

theDIST network95.1%, and theMPM network76.2%. Also, the values of the standard deviation of the

efficiency,σ (ηov), are quite low. In general, the single-output networks provide consistent performance for

each individual class (N,D, P, andP + D). However, theMPM network classifies disturbance data poorly

with only 43.1% correct. Although the best input group and design method vary, there is often a predominant

input group and network design, and the performance is relatively consistent for these combinations.
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Combined networks. Test data results are presented in Table 7 for the best combined network, based on

validation set performance. The results were obtained in the following way. All possible network design

and input group combinations for both theABandMPM networks were compared based on their validation

database accuracy at correctly detecting model-plant mismatches. The best combination was then evaluated

on the test database. As an alternative, one could also use the individual networks with the best validation

performance, but for this case study, the validation and test data results were better using the best combined

networks. In Table 7,hi represents the percent correct for each classi in the pool of classified results; ‘ov’

represents the overall percent correct for the pool. Also,Ci is the percentage of classi in the pool, except

for ‘ov’, which is the percentage of the total data that were classified. By using the combined approach, the

overall percent of correct cases for a “Plant change/No plant change” decision improved from 76.2% for

the individualMPM network to 82.2%. However, in order to achieve this modest increase in performance,

27.8% of the test data were not classified. Type I errors also increased compared to the individualMPM

network, 16.1% vs. 14.8%. The main cause of the classification errors for the combined network approach

is that it classifies a large amount of theD test data instead of labeling them as “Not Classified”. This result

is incorrect because this classifier has only two classifications, either “No plant change” or “Plant change”.

No entry forηD is included in Table 7 because it would not be applicable for this type of classifier.

Exclusion strategy. The exclusion strategy of Section 4 was evaluated using the individualAB andDIST

networks that had the best validation performance for each trial. These results are shown in Table 8. Almost

all of the N andD datasets are classified correctly, and86.7% of theP cases are correctly labeled as a

plant change. The majority of the misclassified cases are classified incorrectly as a disturbance (D). The

efficiency isηP = 86.7%, while the accuracy is relatively high,p(P ) = 87.4%. Thus, the false alarm rate

for a plant change-only condition has now been reduced toFAR(P ) = 12.6% from E1 = 14.8% for the

MPM classifier in Table 6. Also,FAR(P, P + D) is very low, 6.4%.

The results in Table 8 indicate that non-classified datasets are not an issue, unlike the situation in Table

7 for the combined network approach. Also, theP + D datasets, while not classified as plant changes, are

almost always classified as disturbances, which is, in a sense, correct. This situation is much more desirable

than having them misclassified as “Normal”. As for the combined network approach, one could design the

exclusion classifier by choosing the combination of input group and network design method that maximized
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the performance for the validation database. However, based on comparing validation set performance,

the best approach (based on the average of efficiency and accuracy) for the case study is to use the best

individual networks.

Four-output network. An advantage of the four-output network is its ability to discard invalid classifi-

cations. That is, if more than one output has a value of one, the classification is meaningless because the

test data can belong to only one of the four classes. This approach is calledSmart Classification, as op-

posed toStandard Classificationwhere invalid results are not discarded. However, the test database results

for the case study in Table 9 indicate that very few of the classifications were actually invalid. Regardless

of whether the invalid classifications are taken into account, the performance is about the same. Overall,

the four-output network achieves about73% correct, with theD datasets causing the most difficulty, be-

cause only about52% were correctly classified. A disadvantage of the four-output network is the much

slower training speed. Tables 10 and 11 present a detailed error analysis and a comparison of the actual and

indicated classifications, respectively.

Model-error diagnosis. After a model-plant mismatch has been detected, it is very desirable to diagnose

the specific sub-models (if any) that are most affected. This task is very difficult, but important. For the

Wood-Berry column case study, four single-output networks were used to diagnose plant changes in the four

corresponding SISO models. These networks were developed using the plant change only (P ) data from the

same training and validation databases used for the detection networks previously described. Using actual

P data for training is a simpler and faster approach than using classifiedP data from the exclusion strategy

classifiers. The resulting networks were then evaluated on two sets of test data, (1) the actualP data in the

test database, and (2) the indicatedP data from the exclusion strategy classifiers.

The results of the model error diagnosis are presented in Table 12. For the actualP data, the diagnosis

achieves an average of over80% correct for three out of the four sub-models. Note that the plant changes

in the test database include simultaneous changes in more than one sub-model, as described in Section 5.1.

Also, the results are fairly consistent across the five trials, as indicated by the standard deviations. The model

error diagnosis is also quite good for the indicatedP data in Table 12, although somewhat less accurate than

for the actualP data, as would be expected.

The authors have also investigated the effect of reducing the amount of training data for the various NN
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classifiers.45 The classifier performance was still very satisfactory even when the size of the training database

was reduced from 2000 to 500 datasets. For example,ηov values for theAB classifier only decreased from

98.4% to 97.8%, while the false alarm rateFAR(P, P + D) in Table 8 increased from 6.4% to 14.4%.

6 Summary

A novel methodology has been proposed for classifying the performance of model predictive control sys-

tems, based on pattern classification and neural networks. The methodology is based on the premise that

MPC system operation can be classified as one of four classes: Normal, Disturbance, Plant Change, or Plant

Change + Disturbance. (Sensor faults are considered to be equivalent to output disturbances.) A simulated

database is used to train neural network classifiers that determine whether or not an unusual disturbance,

a significant plant change, or both are present. After a plant change is detected, other classifiers are used

to diagnose which sub-models are inaccurate. The simulated database consists of windows of closed-loop

MPC data that contain a wide variety of random disturbances and perturbed plant models that represent

the four operating classes. Features are extracted from the simulated data and used as inputs to the neural

networks. The proposed monitoring methodology has provided accurate, reproducible results for a detailed,

simulated case study using the Wood-Berry distillation column model. The methodology could distinguish

between normal and abnormal MPC performance for98% of the independent test cases, an average value

for five replicate trials. The proposed methodology detected abnormal disturbances correctly for 95% of

the test cases. Model-plant mismatch was detected correctly for 76% of the test cases. Also, a low false

alarm rate of less than 7% was achieved for detecting plant changes by using a novel exclusion strategy

classifier. Once a plant change is detected, the proposed methodology can be used to diagnose the particular

sub-models that are no longer accurate. In the case study, the accuracy of each sub-model was determined

correctly for about80% of the test cases.
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Appendix Simulation of plant changes

The following approach was used to ensure that a wide variety of plant changes were present in the simulated
database. Specify:

1. The rationr/ntot, wherenr is the number of simulated datasets in whichr out of then models are
perturbed, andntot is the total number of plant change datasets. For the case study,nr/ntot is the
same for all values ofr; thus forn = 4 models,nr/ntot = 0.25.

2. The manner in whichr ∈ {1, 2, . . . , n}, the number of models to be perturbed, is chosen. For
example, in the case study,r was chosen randomly.

3. How thenumberof perturbed model parametersg′i ∈ {1, . . . , gi}, wheregi is the total number of
parameters in modeli, is distributed. In the case study,gi = 3, andg′i was chosen randomly to be one,
two, or three.

4. How the choice ofwhichg′i parameters are perturbed is made. In the case study, the specific parame-
ters to be perturbed were chosen randomly.

5. A range of perturbation magnitudes for each model parameter.

After these decisions have been made, the distribution of plant changes in the closed-loop database is spec-
ified.
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Figure 4: A generic, feedforward, multi-layer perceptron.
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Table 1: Features considered as potential neural network inputs.

Category Features

Basic Statistics Mean, Std. Dev., Total Variation

Correlation ACF, PACF, Variogram

Performance Metrics Rise Time, Settling Time, Overshoot, IAE

Variables u, y, ε, CE, ∆u

36



Table 2: Distribution of the operating conditions in the simulated databases.

Database N D P P + D Total

Training 500 500 500 500 2000

Validation 250 250 250 250 1000

Testing 200 200 200 200 800
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Table 3: Disturbances and plant changes in the simulated databases.

Output & Input disturbances Feed disturbance # Models Changed:

Database Types† Range (wt%) Types Range (%) 1 / 2 / 3 / 4 models

Training S,R,O,St1,2 ±[0.25− 3.25] — — 125 / 125 / 125 / 125

Validation S,R,O,St3 ±[0.25− 3.25] — — 62 / 63 / 63 / 62

Testing — — S,R,O,St4 ±[12.5− 37.5] 50 / 50 / 50 / 50

† Disturbance types: S=step, R=ramp, O=sinusoidal oscillation, Sti=stochastic with transfer function i.
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Table 4: Description of input feature groups used for the 14 NN input groups.

Group No. Mean Std. Dev. ACF† PACF‡ Vario. Ctl. Perf. TV

1 8 I,O I,O

2 12 I,O,∆I I,O,∆I

3 8 O

4 12 ∆I,ε,CE

5 12 ∆I,ε,CE

6 24 ∆I,ε,CE ∆I,ε,CE

7 20 I,O,∆I,ε,CE

8 24 I,O,ε I,O,ε ∆I,ε,CE

9 16 I,O,ε I,O,ε ε

10 18 I I,ε ε ε

11 20 I,ε I,ε ε ε

12 12 I,O,ε I,O,ε

13 12 I,O,ε I,O,ε

14 16 I,O,ε ε I,O,ε

† Lags of 1 and 3 were used for Groups 5 & 6; lags of 1, 2, and 3 were used for Groups 10 & 11.

‡ Lags of 1 and 3 were used except for Groups 10 & 11 which used lags of 1, 2, and 3.

Symbols: I=input, O=output,∆I=differenced input,ε=one-step ahead residuals, CE=control error
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Table 5: Test database performance results (ηov in %) for each input feature group. The best results are

shown in boldface.

Input # AB DIST MPM

Group Inpts. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 8 98.5 0.2 95.1 2.8 71.4 1.0

2 12 98.5 0.2 93.9 2.5 76.2 1.9

3 8 93.4 0.5 95.9 0.3 69.2 2.2

4 12 94.2 0.3 93.4 1.2 73.1 1.6

5 12 94.0 0.4 93.9 1.0 73.2 2.7

6 24 96.1 0.4 92.8 0.9 76.3 0.9

7 20 86.9 0.9 81.4 0.6 72.3 1.3

8 24 97.8 0.7 95.2 0.3 74.7 1.5

9 16 98.4 0.4 93.8 1.1 74.9 2.6

10 18 97.7 1.0 94.5 1.5 74.1 3.2

11 20 97.8 0.8 93.7 1.4 75.6 1.9

12 12 98.4 0.3 93.7 2.8 76.3 1.5

13 12 97.3 0.6 93.6 0.8 76.1 2.3

14 16 98.0 0.4 94.0 1.7 74.1 1.7
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Table 6: Test database performance results (%) for individual classification networks*.

Network ηov σ(ηov) E1 E2 ηN ηD ηP ηP+D Input Group NN Design

AB 98.4 0.4 0.2 1.4 99.1 100.0 94.5 100.0 1-1-9-9-9 2-2-3-2-3

DIST 95.1 0.9 2.0 2.9 100.0 94.3 92.1 94.0 12-1-2-12-2 3-2-3-3-3

MPM 76.2 1.5 14.8 9.0 97.8 43.1 83.3 80.8 11-10-11-11-11 2-2-2-3-3

* The null hypothesisH0 for E1 andE2 is defined in Section 4.
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Table 7: Test database performance results (%) for combined networks.

hov σ(hov) E1 E2 ηN ηP ηP+D Cov CN CD CP CP+D

82.2 3.6 16.1 1.5 93.7 68.2 74.4 72.2 33.0 16.2 25.1 25.7
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Table 8: Comparison of Actual and Indicated classifications using the exclusion strategy.

Classified as (%)

Actual Dataset N D P Not Classified

N 99.1 0 0.9 0

D 0 94.3 5.7 0

P 5.4 7.8 86.7 0.1

P+D 0 94.0 6.0 0

ηP = 86.7% p(P ) = 87.4%

FAR(P ) = 12.6% FAR(P, P + D) = 6.4%
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Table 9: Test database performance (%) of four-output network: Standard and Smart classification.

Actual Operating Condition Cases Not Classified

ηov ηN ηD ηP ηP+D N D P P + D

Standard Mean 72.8 96.8 52.0 72.8 69.7 0 0 0 0

Classification Std. Dev. 1.9 1.1 7.2 6.8 6.0 0 0 0 0

Smart Mean 73.3 97.1 52.4 73.6 70.0 0.6 1.4 2.0 1.0

Classification Std. Dev. 1.9 1.1 7.2 7.3 5.9 0.9 1.1 1.4 1.0
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Table 10: Test database error analysis of four-output network: Type I and II Errors (% of total)*.

Null hypothesis: N D P P + D

E1 E2 E1 E2 E1 E2 E1 E2

Standard Mean 0.8 2.2 12.0 6.8 6.8 2.0 7.6 13.0

Classification Std. Dev. 0.3 0.7 1.8 1.3 1.7 0.9 1.5 2.0

Smart Mean 0.7 2.1 11.9 6.7 6.6 1.7 7.5 12.8

Classification Std. Dev. 0.3 0.7 1.8 1.3 1.9 0.7 1.5 1.9

* The null hypotheses forE1 andE2 are defined in Section 4.
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Table 11: Comparison of indicated and actual operating condition of test database for four-output network.

Classified as (%)

N D P P + D

True Class Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Standard N 97.1 1.1 0.0 0.0 2.0 1.2 0.0 0.0

Classification D 0.0 0.0 52.3 7.0 2.0 1.3 43.9 5.8

P 8.9 2.7 4.8 1.4 73.6 7.5 8.1 3.7

P+D 0.0 0.0 22.4 5.5 4.0 1.8 70.2 5.8

Smart N 97.1 1.1 0.0 0.0 2.0 1.2 0.0 0.0

Classification D 0.3 0.5 52.1 7.1 2.0 1.3 43.8 6.2

P 9.0 2.7 5.0 1.4 73.2 7.4 8.4 3.5

P+D 0.0 0.0 22.6 5.4 5.2 2.1 68.5 6.8
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Table 12: Model error diagnosis based on classifying actual and indicatedP datasets.

ActualP datasets IndicatedP datasets

Network / % Correct % in Input Design % Correct

sub-model Mean Std. Dev. Database Group Method Mean Std. Dev.

G11 81.1 3.3 60.5 8-5-5-2-8 2-2-2-3-3 77.4 4.0

G12 77.6 4.1 67.5 10-1-11-7-8 1-3-3-3-1 72.5 4.0

G21 81.2 0.8 62.0 12-10-8-12-9 1-3-3-3-3 75.9 1.4

G22 83.7 1.0 60.0 11-8-8-6-8 1-3-1-3-3 79.2 1.9
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