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Clustering multivariate time-series data
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A new methodology for clustering multivariate time-series data is proposed. The new methodology

is based on calculating the degree of similarity between multivariate time-series datasets using two

similarity factors. One similarity factor is based on principal component analysis and the angles

between the principal component subspaces while the other is based on the Mahalanobis distance

between the datasets. The standard K-means clustering algorithm is modified to cluster multivariate

time-series datasets using similarity factors. Simulation data from two nonlinear dynamic systems: a

batch fermentation and a continuous exothermic chemical reactor, are clustered to demonstrate the

effectiveness of the proposed technique. Comparisons with existing clustering methods show

several advantages of the proposed method. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cluster analysis is the art of finding groups in data. Because

living beings, object and events encountered in everyday life

are too numerous for processing as individual entities, they are

usually groped on the basis of the similarity of their features

into categories. A related term, classification, is the process or

act of assigning a new item or observation to its proper place in

an established set of categories or classes [1,2].

In industrial plants, modern data recording systems col-

lect large amounts of data that contain valuable information

about normal and abnormal behavior of the process. It

would be beneficial if these data could be categorized into

groups of operating conditions so that the characteristics of

these groups can be used for decision support in fault

detection and diagnosis, gross error detection, etc. [3] There

have been numerous textbooks [1,4] and publications on

clustering of scientific data for a variety of areas such as

taxonomy [5], agriculture [6], remote sensing [7], as well as

process control [3,8].

Clustering of multivariate time-series data attempts to find

the groups of datasets that have similar characteristics. These

groups can then be further analyzed in detail to gain insight

from the common characteristics of the datasets in each

group. The process knowledge acquired from the clustering

can be very valuable for activities such as process improve-

ment or fault diagnosis, where each new operating condition

could be classified as either an existing condition or a new

condition.

In this paper, a new clustering methodology for process

data, particularly multivariate time-series data, is presented.

It is assumed that the database contains sets of multivariate

time-series data, which correspond to different periods of

process operation, for example different batches produced

by a batch process. The clustering methodology is based on

calculating the degree of similarity using principal compo-

nent analysis (PCA) and distance similarity factors.

We first review the previous research concerning cluster-

ing process data in Section 2 and then present our approach

in Section 3. Sections 4 and 5 describe two simulation

examples and results using the new methodology.

2. PREVIOUS WORK

Although clustering is a popular topic in the area of pattern

recognition, relatively few applications have been reported

in the process monitoring and chemometrics literature. Most

reported chemometrics applications cluster objects that can

be described by a set of features or attributes [9–11]. Clustering

is then performed using widely available methodologies

[1,4] or their modifications/extensions. Although there is a

large amount of literature available concerning clustering

methodologies and applications [12–18], only a few applica-

tions have been reported that cluster multivariate time-series

data, such as data from process engineering and control

applications.

Many researchers have used PCA with clustering to

reduce the dimensionality of the feature space. The number

of linearly dependent features are reduced and their scores

are calculated. The scores are then used as ‘new’ uncorre-

lated features that are clustered [19–22]. Guthke and

Schmidt-Heck [23] used clustering and PCA to estimate the

phase of growth of microorganisms. Lin et al. [24] used PCA
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to extract scores from 2-D images and then used clustering

methods to estimate the motion characteristics to distinguish

different moving objects. Rosen and Yuan [25] used dynamic

PCA to extract the principal components that represent the

underlying mechanisms of a wastewater treatment process for

monitoring. Thus, they used cluster analysis on the principal

components to determine the operational state of the process.

In analyses of forearm ischemia [26] and clustering gene

expression data [27], researchers found that applying PCA to

the features does not necessarily improve clustering perfor-

mance and in some cases may even degrade performance

[27]. Although these researchers do not recommend using

PCA with clustering, their results appear to be application

specific. The successful application of PCA to clustering

reported by other researchers mentioned above suggests

that PCA can be beneficially used for clustering.

Gaffney and Smyth [28], Smyth [29] and Gershenfeld et al.

[30] proposed methodologies for clustering sequential data

using general probabilistic models, but their approaches are

restricted to clustering of univariate sequences, in contrast to

the multivariate time series which are typical of process data.

Smyth [29] clustered sequential data using polynomial re-

gression models, but this approach has limited applications,

given the nonlinear and diverse behavior of industrial time-

series data.

Clustering applications have also appeared in the chemi-

cal engineering literature. Johnston and Kramer [3] clustered

data using a probabilistic approach and the expectation-

maximization algorithm. Their methodology involved esti-

mating the probability distributions of the steady states of a

system in the multidimensional space of process variables.

But this approach is difficult to extend to dynamic systems

(such as batch processes) because process dynamics blur the

distinction between different operating conditions in the

multidimensional space [32].

Huang et al. [33] used PCA models to cluster multivariate

time-series data by splitting large clusters into smaller clus-

ters based on the amount of variance explained by a number

of principal components. This approach can be quite restric-

tive if the number of principal components for the entire

dataset is not known a priori, and also because a pre-deter-

mined number of principal components may be inadequate

for some of the operating conditions.

Wang and McGreavy [3] clustered multivariate time-series

data for a simulated fluid catalytic cracking unit in order to

classify different operating conditions. The process data

were organized as an m� n matrix of m observations and

n variables. The data were clustered by unfolding the multi-

variate dataset into a long row vector and then using the

individual elements as features. Then the datasets were

clustered using the Autoclass algorithm [34]. This methodol-

ogy quickly becomes computationally prohibitive as the

number of measurements and variables for each dataset

increase. Also, this approach requires that each dataset

contains the same number of observations; otherwise, dif-

ferent datasets will contain different number of features.

This requirement is quite restrictive for process data where

the duration of an operation (e.g. a batch), can vary from one

dataset to another. These limitations of clustering unfolded

data can be overcome by using PCA and distance similarity

factors as measures of similarity between datasets. By con-

trast, in Wang and McGreavy’s methodology, Euclidean

distance between features was used as a dissimilarity mea-

sure. Our new approach is the focus of this paper.

Wang and Li [8] described another clustering methodol-

ogy called ‘conceptual clustering’ for designing state-space-

based monitoring systems. This approach generates ‘con-

ceptual knowledge’ about the major variables, and projects

the data to a specific operational state. The dynamic trends

are represented using principal components of the data. The

datasets are then clustered using simple 2-D plots of the first

two principal components for each variable. Although this is

an interesting technique, it requires user input and can

become tedious for a large number of process variables.

Keogh et al. [32] considered clustering of streaming time-

series data, and claim that clustering such data is ‘mean-

ingless’. We also found that it is difficult to cluster time-

series data that includes transients between different plant

operating conditions. The transients appear to blur the

distinction between operating conditions and result in either

too many or too few clusters. Thus, in this paper we assume

that the steady-state plant operation periods have been

identified for continuous plants and cluster the steady-state

datasets, or batch datasets, for the case of batch processes.

In a recent paper, Lin et al. [35] considered clustering

univariate time-series data using wavelets, expectation-

maximization algorithm [36] and K-means clustering to

group univariate time-series datasets. They decomposed

each time series using the wavelet transform and then

clustered the resulting wavelet coefficients. Although their

approach is promising, the focus of this paper is clustering of

multivariate time-series datasets.

Srinivasan et al. [37] used Euclidean distance to cluster

different modes of operation for a fluidized catalytic cracker

unit and the Tennessee Eastman challenge process [38]. They

also used dynamic PCA-based similarity factors to deter-

mine the similarity of transitions between plant modes and

proposed that two datasets were similar if the PCA similarity

factor was larger than a specified threshold. The threshold

could either be calculated from historical data or specified

from a priori knowledge. This procedure defines similarity

between datasets in absolute terms, whereas defining simi-

larity as a relative measure is more appropriate for cluster-

ing. Another limitation of the dynamic PCA-based approach

is that it is strongly influenced by the ratio of sampling

period to the dominant time constant of the process. Two

similar transitions that have different dynamics but the same

sampling period will result in different autocorrelation func-

tions and consequently different dynamic PCA models. This

is another reason why clustering transient data is difficult.

Owsley et al. [39] clustered multivariate time-series using

Hidden-Markov models. Hidden-Markov models (HMMs)

are probabilistic models that are able to capture not only the

dependencies between variables, but also the serial correla-

tion in the measurements [40]. Thus, they are well suited for

modeling multivariate time series. Each cluster center is

represented by an HMM and datasets that can be described

most accurately by an HMM are grouped in a cluster.

Although the HMM approach is suitable for clustering multi-

variate time-series data, building HMMs for continuous data
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may require either an assumed probability distribution

or vector quantization [41]. In spite of these limitations,

clustering of multivariate time-series data using HMMs is

a promising approach.

3. CLUSTERING USING SIMILARITY
FACTORS

Similarity factors can be used instead of Euclidean distance to

measure similarity between two multivariate datasets. Krza-

nowski [42] developed a method for measuring the similarity

of two datasets, X1 and X2, using a PCA similarity factor that is

calculated using the k largest principal components (PCs) of

each multivariate dataset. The principal components are also

the eigenvectors of the covariance matrix of a multivariate

dataset. The PCA similarity factor, SPCA is defined as [42],

SPCA ¼4 1

k

Xk

i¼1

Xk

j¼1

cos2�ij ð1Þ

where k is the number of selected PCs in both datasets, �ij is

the angle between the ith PC of X1 and the jth PC of X2. The

number of PCs, k, can be chosen such that k PCs describe at

least 95% variance in each dataset.

Because SPCA weights all PCs equally, it may not capture the

degree of similarity between the datasets when only one or two

PCs explain most of the variance. Thus, it is natural to define a

modifiedPCAsimilarityfactor,S�PCA thatweightseachPCbyits

explained variance. The S�PCA is defined as [43,44],

S�PCA ¼
Pk

i¼1

Pk
j¼1 �

ð1Þ
i �

ð2Þ
j

� �
cos2�ijPk

i¼1 �
ð1Þ
i �

ð2Þ
i

ð2Þ

where �
ð1Þ
i and �

ð2Þ
i are the ith eigenvalues of the first and

second datasets respectively.

The distance similarity factor, Sdist [45], compares two

datasets that may have similar spatial orientation but are

located far apart. This similarity factor is particularly useful

when two datasets have similar principal components but

the values of the process variables may be different due to

different operating conditions. The distance similarity factor

can be used to distinguish between these cases. The distance

similarity factor, Sdist is defined as,

Sdist ¼
4

2 � 1ffiffiffiffiffiffi
2�

p
Z 1

�

e�z2=2dz

¼ 2 � 1 � 1ffiffiffiffiffiffi
2�

p
Z �

�1
e�z2=2dz

� � ð3Þ

where:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�xx2 � �xx1Þ R1

��1 ð�xx2 � �xx1ÞT
q

ð4Þ

�xx1 and �xx2 are sample mean row vectors. R1 is the covariance

matrix for dataset X1, and R1
��1 is the pseudo-inverse of X1

calculated using singular value decomposition. k-singular

values used to calculate the pseudo-inverse such that k PCs

describe at least 95% of the variance in each dataset. In

Equation (4), dataset X1 is assumed to be the reference dataset.

Note that a one-sided Gaussian distribution is used in

Equation (3) because �50. The error function in Equation (3)

can be evaluated using standard tables or software packages.

Also note that the integration in Equation (3) normalizes Sdist

between zero and one. Because the relative values of Sdist are

used for clustering and pattern matching applications, any

mapping from � to Sdist may be used that is monotonic and

results in 04Sdist41, and �i > �j ) Sdist;i < Sdist;j.

The similarity factors do not depend on the number of

observations in each dataset and can be calculated with a

relatively small computational effort. Later, the standard

K-means clustering algorithm [1,4] is modified for clustering

using similarity factors.

3.1. Inclusion of product quality data
For many practical problems, each dataset includes a set of

‘quality measurements’ that are made infrequently, for

example at the end of a batch or an 8-hour shift. Further-

more, important calculations are often made for each dataset

such as a reaction yield, furnace efficiency or error of closure

for a mass or energy balance. These infrequent measure-

ments or calculated quantities will be referred to as additional

features or the ‘Y data’ to distinguish them from the time-

series (process) data, which are referred to as the ‘X data’

[46]. The dimensions of the X data matrix are m� nx while

the dimensions of the Y data are 1 � ny, where ny is the

number of quality variables.

The similarity factor for the Y data is based on the

Euclidean distance between two datasets being compared.

The Euclidean distance between the Y data for two datasets,

Y1 and Y2, is defined as,

�y ¼
4 kY1 � Y2k ð5Þ

where the notation k � k represents Euclidean norm. Assum-

ing that the Y data have a Gaussian probability distribution,

the distance similarity factor for the Y data, S
y
dist, is defined

as,

S
y
dist ¼

4
ffiffiffi
2

�

r Z 1

�y

e�z2=2dz ð6Þ

Note that both Sdist and S
y
dist lie between zero and one.

3.2. Combination of similarity factors
When more than one similarity factor is used to calculate the

similarity between datasets, a key issue is to decide how

should the similarity factors be combined to produce a single

measure of the degree of similarity. It is convenient to

combine S�PCA and Sdist into a single similarity factor, SF,

using a weighted average of the two quantities

SF¼4 �1S
�
PCA þ �2Sdist ð�1 þ �2 ¼ 1Þ ð7Þ

When Y data are included, the combined similarity factor SF,

becomes

SF¼4 �1S
�
PCA þ �2Sdist þ �3S

y
dist ð�1 þ �2 þ �3 ¼ 1Þ ð8Þ

The weighted average SF can be used as a similarity

measure between datasets and is also used for clustering. It

is up to the user to choose the weighting factors f�ig to give

relative importance of each similarity factor for his/her

application. Fortunately, experience has shown that good

pattern matching can be obtained for a wide range of f�ig.
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Algorithm 1. K means clustering using similarity factors.

Given: Q datasets, fX1; . . . ;Xq; . . . ;XQg, to be clustered into K

clusters.

1. Let the jth dataset in the ith cluster be denoted by X
ðiÞ
j .

Compute the aggregate dataset �i (i¼ 1,2, . . . ,K), for

each of the K clusters as,

�i ¼ X
ðiÞ
1

� �T
. . . X

ðiÞ
j

� �T
. . . X

ðiÞ
Qi

� �T
� �T

ð9Þ

where, Qi is the number of datasets in �i. Note thatPK
i¼1 Qi ¼ Q.

2. Calculate the dissimilarity between dataset Xq

(q¼ 1,2, . . . , Q) and each of the K aggregate datasets

�i, i ¼ 1; 2; . . . ;K as,

di;q ¼ 1 � SFi;q ð10Þ

where SFi;q is the similarity factor between the qth

dataset and the ith cluster described by Equations (7)

or (8). Let the aggregate dataset �i in Equation (10) be

the reference dataset. Dataset Xq is assigned to the

cluster to which it is least dissimilar, that is to the

cluster that has the smallest value of di;q. Repeat this

step for all Q datasets.

3. Calculate the average dissimilarity of each dataset

from its cluster as:

JðKÞ ¼ 1

Q

XK
i¼1

X
Xq2�i

di;q ð11Þ

4. If the value of J(K) has changed from a previous

iteration, then go to Step 9. Otherwise stop.

3.3. Selection of the number of clusters
One of the key design parameters of the K-means clustering

algorithm is the specification of the number of clusters, K.

There are many methods available to estimate the optimum

value of K [13,14]. Also, Rissanen [47,48] proposed model

building and model order selection on the basis of model

complexity. In Rissanen’s approach, more complex models

are penalized more than less complex ones. For the present

clustering problem, a large number of clusters indicates a

more complex model. Several methods that penalize high-

model complexity, that is a large number of clusters, such as

the Akaike Information Criterion (AIC) and Schwartz Infor-

mation Criterion (SIC) [49], were evaluated for estimating

the optimum number of clusters. However, preliminary

results obtained using these methods were not promising

and consequently a new method was developed.

Cross-validation is another approach for estimating the

number of clusters in the data [50]. For cross-validation, the

data are split into two or more parts. One part is used for

clustering while the remaining parts are used for validation.

However, Krieger and Green [51] have reported that such

methods fail to identify the appropriate number of clusters,

particularly for large amounts of data and for situations

where the variables are highly correlated, which commonly

occurs for process data.

We follow a different approach where data are clustered

using the K-means algorithm for different values of K. We

then analyze the sequence JðKÞ in order to estimate the

optimum number of clusters. The value of K is increased

from 1 to Q, where Q is the number of datasets. Typically,

JðKÞ decreases with increasing K [2]. However, the optimum

number of clusters can be estimated if the value of

JðKÞ changes significantly between consecutive values of

K [2,13].

These considerations motivate a new method for estimat-

ing the optimum number of clusters. The values of K where

the plot of JðKÞ has a ‘knee’ are proposed as candidate values

for the optimum number of clusters. The clustering algo-

rithm is repeated for different values of K and the percentage

change in JðKÞ, dJðKÞ, is calculated as:

dJðKÞ¼4 jJðK þ 1Þ � JðKÞj
JðKÞ � 100% K ¼ 1; 2; 3; . . . ð12Þ

The value of dJðKÞ is plotted against the number of clusters

K. The value of K for which dJðKÞ reaches a minimum or is

close to zero, is a knee in the plot of JðKÞ. Thus, the sign of the

difference of dJðKÞ is used to estimate the locations of these

‘knees’

 ðKÞ¼4 Sign dJðK þ 1Þ � dJðKÞ½ � K ¼ 1; 2; 3; . . . ð13Þ

The quantity,  ðKÞ, is similar to the sign of the second

derivative of JðKÞ. The values of K for which  ðKÞ changes

from negative to positive as K increases, are selected to be

the ‘knees’ in the JðKÞ versus K plot. Usually, the location

of the first knee is selected as the optimum number of

clusters.

3.4. Clustering metrics
Some key definitions are introduced here in order to evaluate

the performance of various clustering methodologies con-

sidered in this paper. Suppose that data contain Nop operat-

ing conditions and there are NDBj
datasets of operating

condition number j in the database (j ¼ 1; 2; 3; . . .). Suppose

that the data have been divided into K clusters; then a cluster

purity, p, is defined to characterize the purity of each cluster

in terms of how many datasets of a particular operating

condition are present in that cluster. The cluster purity for

the ith cluster is defined as,

pi ¼
4 maxj Ni;j

� �
NPi

� 100% ð14Þ

where Ni;j is the number of datasets of operating condition j

in the ith cluster, and NPi
is the number of datasets in the ith

cluster. The dominant operating condition in a cluster is the

operating condition, which occurs in the largest number in

that cluster.

A second metric, the clustering efficiency, �, is defined to

measure the extent to which an operating condition is

distributed in different clusters. If there is perfect partition-

ing of data, then all datasets for a particular operating

condition will be grouped in a single cluster. Thus, this

measure is designed to penalize large values of K, when

an operating condition is distributed in different clusters.
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The clustering efficiency for the jth operating condition is

defined as,

�j ¼
4 maxi Ni;j

� �
NDBj

� 100% ð15Þ

where NDBj
is the total number of datasets for operating

condition j in the database. The p and � metrics provide a

tradeoff between cluster purity and the concentration of

operating conditions in separate clusters.

4. SIMULATION CASE STUDY: BATCH
FERMENTATION

In order to evaluate different pattern matching techniques, a

case study was performed based on a simulated database for

batch fermentation. The dynamic model by Vortruba et al. [52]

summarizes biochemical as well as physiological aspects of

growth and metabolite synthesis of acetone-butanol-ethanol

fermentation. The model consists of ten nonlinear ordinary

differential equations with nine measured variables. A de-

tailed description of the model and its parameters is provided

by Vortruba et al. [52]. The relevant model variables and

parameters are described in Table I while all other parameters

are described by Vortruba et al. [52]. The measured variables

are also shown in Table I while the quality variables calcu-

lated at the end of every batch are presented in Table II.

For simulation purposes, the cell inoculum, glucose and

other nutrients are added to the reactor, and fermentation is

allowed to proceed for a fixed period of time in order to

produce acetone, butanol and ethanol.

4.1. Generation of data
Model parameter values and initial conditions were varied

from batch to batch in order to simulate abnormal operation.

Each abnormal operating condition was characterized by an

abnormal value of a cell physiology parameter. The magni-

tude of the abnormal parameter varied randomly from batch

to batch. The duration of each batch was 30 hour. The five

operating conditions and parameter ranges are shown in

Table III. The operating conditions were simulated to pro-

vide a database of 100 batches. The number of batches of

each operating condition in the database were different and

are given in Table III. Gaussian measurement noise was

added to the measured variables so that the signal-to-noise

ratio for a normal batch run was approximately equal to 10.

4.2. Pre-processing of data
The reactor cell concentration was measured at 30-minute

intervals while the other eight process variables in Table I

were measured every minute during the 30-hour batch

operation. In order to synchronize cell concentration mea-

surement with the other eight process variables, linear

interpolation was used to obtain values of cell concentration

every minute between the 30-minute samples. Thus, the data

consisted of a total of 180 000 measurements for each process

variable. The data were then averaged every 5 minutes.

Because each batch was of 30-hour duration, the averaging

produced 360 measurements per variable for each batch.

Other simple methods such as zero-order hold or cubic

spline interpolation could also have been used for recon-

struction of missing values, but linear interpolation offered

two advantages: (i) it provides more accurate information

about the missing values (between the 30-minute samples)

compared to a zero-order hold, and (ii) it is computationally

less intensive than cubic spline interpolation. For these

reasons, linear interpolation was used in this research.

4.3. Results for the batch fermentation
example
The proposed clustering methodology was evaluated using

data from the batch fermentation case study and a contin-

uous reactor presented later in Section 5. Different combina-

tions of similarity factors were used to characterize the

similarity between datasets and the clustering results were

compared for each case. Because the K-means algorithm can

become trapped in local minima, for each value of K,

clustering was repeated using ten independent and random

initial guesses for the cluster memberships. After the con-

vergence of the clustering procedure, the solution that re-

sulted in the lowest value for J(K) was considered as the best

clustering solution.

We also compare the proposed clustering methodology

with Wang and McGreavy’s approach of clustering unfolded

data to show the advantage of the new method. Because

clustering unfolded data requires the datasets to have the

same number of observations, every dataset was forced to be

of the same duration for a fair comparison even though the

new clustering method does not have this restriction.

The K-means clustering procedure was repeated for

values of K ¼ 2 through 10 for SF ¼ 0:67S�PCA þ 0:33Sdist

Table I. Relevant model variables and parameters

for acetone-butanol fermentation example

Variable/ Sampling
Parameter Description period

y Dimensionless cellular Not
RNA concentration measured

X Reactor cell concentration 30 minutes
S Reactor substrate concentration 1 minute
BA Reactor butyric acid 1 minute

concentration
AA Reactor acetic acid concentration 1 minute
B Reactor butanol concentration 1 minute
A Reactor acetone concentration 1 minute
E Reactor ethanol concentration 1 minute
CO2 CO2 concentration 1 minute
H2 H2 concentration 1 minute
KS Substrate uptake saturation Not applicable

constant
KI Butanol inhibition constant Not applicable

Table II. Quality data calculated at the end of every batch for

the acetone-butanol fermentation example

Variable/Parameter Formula Description

YX ðX � X0Þ=ðS0 � SÞ Cell yield
YBA ðBA� BA0Þ=ðS0 � SÞ Butyric acid yield
YB ðB� B0Þ=ðS0 � SÞ Butanol yield
YAA ðAA� AA0Þ=ðS0 � SÞ Acetic acid yield
YA ðA� A0Þ=ðS0 � SÞ Acetone yield
YE ðE� E0Þ=ðS0 � SÞ Ethanol yield
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and X data only. The simulation results are summarized in

Figure 1. It is clear from Figure I(c) that K¼ 6 is the only knee

in the plot of J(K), and thus the optimum number of clusters

is six. Tables IV–VI present clustering results using the

similarity factor approach, PCA scores of unfolded data,

and raw unfolded data respectively. Table IV shows that

there is a significant improvement in the classification of the

data into different clusters compared to the results obtained

by clustering unfolded data in Tables V and VI.1 Operating

condition #1 is now present predominantly in a single cluster

and operating condition #2 is split between clusters #2 and

#3. Only two batches are misclassified out of a total 100.

These results show that the use of similarity factors for

1The optimum numbers of clusters using the unfolded scores and
raw unfolded data were found to be five and six respectively using
the approach described in Subsection 3.3.

Table IV. Results using similarity factors and X data only for the batch fermentation example

Operating condition

Cluster no. NP p (%) Dominant OpID 1 2 3 4 5

1 13 92 1 12 0 0 1 0
2 12 100 2 0 12 0 0 0
3 8 100 2 0 8 0 0 0
4 31 100 3 0 0 31 0 0
5 24 96 4 1 0 0 23 0
6 12 100 5 0 0 0 0 12
Average 17 98 NA � ¼ 92 60 100 96 100

�av ¼ 90

SF ¼ 0:67 S�PCA þ 0:33 Sdist

Table V. Results using PCA scores of X data only for the batch fermentation example

Operating condition

Cluster no. NP p (%) OpID Dominant 1 2 3 4 5

1 20 100 2 0 20 0 0 0
2 18 100 3 0 0 18 0 0
3 23 57 3 10 0 13 0 0
4 27 89 4 3 0 0 24 0
5 12 100 5 0 0 0 0 12
Average 20 89 — � ¼ 77 100 58 100 100

�av ¼ 87

Table VI. Results using unfolded X data only for the batch fermentation example

Operating condition

Cluster no. NP p (%) Dominant OpID 1 2 3 4 5

1 18 50 1 9 0 8 1 0
2 13 100 2 0 13 0 0 0
3 7 100 2 0 7 0 0 0
4 23 100 3 0 0 23 0 0
5 27 85 4 4 0 0 23 0
6 12 100 5 0 0 0 0 12
Average 17 89 NA � ¼ 69 65 74 96 100

�av ¼ 81

Table III. Operating modes for the acetone-butanol fermentation example

Nominal parameter
Op ID Description values Parameter ranges NDB

1 Normal batch operation y0 ¼ 1:0 0.94y041:1 13
X0 ¼ 0:03 g/L 0.014X040:05 g/L
S0 ¼ 50 g/L 454S0455 g/L

2 Slow substrate utilization KS ¼ 40 g/L 304KS450 g/L 20
3 Increased cell sensitivity to butanol KI ¼ 0:425 g/L 0.254KI40:6 g/L 31
4 Decreased cell sensitivity to butanol KI ¼ 1:27 g/L 1.114KI41:42 g/L 24
5 Dead inoculum y0 ¼ 0:075 g/L 0.054y040:1 g/L 12

X0 ¼ 0:003 g/L 0.0014X040:005 g/L
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clustering is more effective than clustering the scores of the

unfolded data. Clustering using similarity factors requires

an average of seven iterations with a computation time of

2.09 seconds per iteration, while clustering using unfolded

data required seven iterations for convergence and

2.57 seconds per iteration on a Pentium 4/1.7 GHz/512 MB

RDRAM computer and Matlab 6.0 for Windows XP.

When quality data are included in the clustering, S�PCA,

Sdist and S
y
dist are combined into a single similarity factor

SF ¼ 0:5S�PCA þ 0:25Sdist þ 0:25S
y
dist. The clustering perfor-

mance using this linear combination of similarity factors is

presented in Figure 2. The optimum number of clusters is

five as shown in Figure 2(c). This estimated optimum num-

ber of clusters is also the actual number of operating condi-

tions in the data. Table VII indicates that there is only one

misclassified dataset out of a total of 100. Thus, clustering

using similarity factors produces very accurate results.

Clustering based on similarity factors using both the X and

Y data required an average of six iterations for convergence

and each iteration required an average of 2.35 seconds of

computer time.

Clustering using different combinations of S�PCA, SPCA, Sdist

and S
y
dist was also evaluated. These results are presented in

Table VIII. Results for SPCA alone or in combination with Sdist

were less impressive than the corresponding cases where

S�PCA was used. The combination of S�PCA, Sdist and S
y
dist

provided the best clustering performance with 99% pure

clusters. Also, the clustering performance was not sensitive

to the choice of the weighting factors f�ig.

When only S�PCA and Sdist were used, the performance was

comparable to the situation where all three, S�PCA, Sdist and

S
y
dist, were used. The S�PCA-Sdist combination produced

superior results compared to the S�PCA-S
y
dist combination.

These results show that the X data play a stronger role

than Y data in distinguishing between different operating

conditions for this case study. This occurs because cell and

product yields (Y data) alone are not sufficient to distinguish

between batches. Interestingly enough, the cell and product

yields are commonly used in the industry to label a batch as

satisfactory or out of spec. The use of the standard PCA

similarity factor, SPCA, alone did not produce good results

because the algorithm failed to converge for any value of K.

This result was also observed when only S
y
dist was used to

Table VII. Clustering results using similarity factors and both X and Y data for the batch fermentation example

Operating condition

Cluster no. NP p (%) Dominant OpID 1 2 3 4 5

1 14 93 1 13 0 1 0 0
2 20 100 2 0 20 0 0 0
3 30 100 3 0 0 30 0 0
4 24 100 4 0 0 0 24 0
5 12 100 5 0 0 0 0 12
Average 20 99 NA � ¼100 100 97 100 100

�av ¼ 99

SF ¼ 0:5S�PCA þ 0:25Sdist þ 0:25S
y
dist
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Figure 1. Clustering performance using similarity factors

and X data only. SF ¼ 0:67 S�PCA þ 0:33 Sdist.

Table VIII. Clustering performance using different combina-

tions of similarity factors for the batch fermentation example

Similarity factor Optimum Average Average
(SF) K p (%) � (%)

SPCA N/Ay N/A N/A
S�PCA 6 98 92
Sdist 6 97 88
0:67 SPCA þ 0:33 Sdist 7 94 86
0:5 SPCA þ 0:5 Sdist 3 81 92
0:67 S�PCA þ 0:33 Sdist 5 98 90
0:5 S�PCA þ 0:5 Sdist 5 98 98
0:5 SPCA þ 0:5 S

y
dist 4 65 65

0:5 SPCA þ 0:25 Sdist þ 0:25 S
y
dist 6 98 92

0:34 SPCA þ 0:33 Sdist þ 0:33 S
y
dist 6 98 92

0:5 S�PCA þ 0:5 S
y
dist 4 86 93

0:5 S�PCA þ 0:25 Sdist þ 0:25 S
y
dist 5 99 99

0:34 S�PCA þ 0:33 Sdist þ 0:33 S
y
dist 5 99 99

0:5 Sdist þ 0:5 S
y
dist 5 96 98

yAlgorithm did not converge for any K
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characterize the dissimilarity between datasets. Thus, the Y

data alone are not sufficient to distinguish between different

operating conditions and the X data play an important role in

classification.

Table IX compares the results using different clustering

techniques. Clearly, the similarity factor methods produce

superior results.

5. SIMULATION CASE STUDY:
CONTINUOUS REACTOR

A case study was performed for a simulated continuous

chemical reactor to evaluate the proposed clustering

methodology in addition to the batch fermentation example

of Section 4. A nonlinear continuous stirred tank reactor

(CSTR) with cooling jacket dynamics, variable liquid level

and a first-order irreversible reaction, A ! B was simulated.

Operating conditions that included faults of varying magni-

tudes, and disturbances were simulated for the CSTR and 14

process variables for each operating condition were

recorded. The details of the simulation study and six differ-

ent operating conditions for the CSTR are available in pre-

vious publications [45,53,54].

The six operating conditions in Table X include a wide

range of disturbance and fault types that can be encountered

in a typical historical database. Each operating condition was

simulated for a period of 85.3 minutes using a sampling

period of 5 seconds for each variable. This approach pro-

duced 105 different data sets each having 1024 data points

for each of the 14 measured variables.

5.1. Results for the CSTR example
The K-means clustering procedure was repeated for K¼ 2

through 10 using two similarity factor combinations:

SF ¼ 0:67SPCA þ 0:33Sdist and SF ¼ 0:67S�PCA þ 0:33Sdist.

These results are summarized in Figures 3 and 4.

Figure 3(c) shows the presence of two ‘knees’ at K¼ 4 and

6 in the J(K) versus K plot. The location of the first knee at

K¼ 4 is the optimum number of clusters. The four clusters

are analyzed in detail in Table XI. In cluster #1, the normal

Table IX. Comparison of clustering techniques for the

fermentation example

Clustering No. of Average Average
method clusters p (%) � (%)

Unfolded data 6 89 81
PCA scores of X data 5 89 87
Y data and PCA scores of X data 6 89 80
SF ¼ 0:67 S�PCA þ 0:33 Sdist 6 98 90
SF ¼ 0:5 S�PCA þ 0:25 Sdist 5 99 99

þ 0:25 S
y
dist
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Figure 2. Clustering results using similarity factors with X

and Y data for the batch fermentation example.

SF ¼ 0:5S�PCA þ 0:25Sdist þ 0:25S
y
dist.
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Figure 3. Clustering performance using similarity factors for

the CSTR example. SF¼ 0.67SPCAþ 0.33Sdist.
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operating condition is classified with autoregressive (F13)

and oscillatory feed disturbances (O3). This result is also

obtained when PCA scores of the unfolded data are clus-

tered (Table XII).2 The other three clusters are pure. Tables XI

and XII suggest that it is difficult to distinguish between

these types of feed disturbances and normal operation.

The clustering results using SF ¼ 0:67S�PCA þ 0:33Sdist, are

shown in Figure 4. The plot of  (K) versus K in Figure 4(c)

indicates the presence of a ‘knee’ at K¼ 8. Thus, the optimum

number of clusters is eight for the S�PCS � Sdist method.

The eight clusters obtained using SF ¼ 0:67S�PCA þ 0:33Sdist

are analyzed in detail in Table XIII. Again, normal operation

is classified with the autoregressive feed disturbance in

cluster #7. In cluster #6, the autoregressive and the sinusoidal

disturbances in the feed are grouped together because both

appear to cause similar effect on the reactor concentration

and temperature variables. The remaining clusters are pure.

The average purity for this clustering is 92%, however, the

clustering efficiency drops to 71% due to the large number of

identified clusters.

A summary of clustering results obtained using other

similarity factor combinations is presented in Table XIV.

These results are presented in Table XIV. For the CSTR

example the combination SF ¼ 0:67SPCAþ 0:33Sdist provides

the best clustering performance. Different combinations of

SPCA with Sdist produce different results, while different

combinations of S�PCA and Sdist produce results that are very

close to each other. Table XIV suggests that the clustering

performance is sensitive to the combination of SPCA and Sdist,

but not to the combination of S�PCA and Sdist.

Table X. Operating conditions for the CSTR case study

ID Operating condition Description Nominal value

N Normal operation Operation at the nominal N/A
conditions. No disturbances.

F1 Catalyst deactivation The activation energy The ramp rate for E/R
ramps up. is þ3 K/minute

F2 Heat exchanger fouling The heat transfer coefficient The ramp rate for UAC is �125
ramps down. (J/(minute(K))/minute

F5 Coolant valve stictionþF7 Dead band for stiction¼ 5% N/A
of the valve span.

F13 Autoregressive disturbance QFðkÞ ¼ 0:8 �QFðk� 1Þþ N/A
in feed flow rate wðkÞ:wðkÞ � N (0,1)

O3 Intermediate frequency oscillations Sinusoidal oscillations of 10 L/minute
in feed flow rate frequency 0.5 cycles/minute

Table XI. Results using SPCA and Sdist similarity factors for the CSTR example

Operating condition

Cluster no. NP p (%) Dominant OpID N F1 F2 F5 F13 O3

1 51 53 N 27 0 0 0 12 12
2 23 100 F1 0 23 0 0 0 0
3 16 100 F2 0 0 16 0 0 0
4 15 100 F5 0 0 0 15 0 0
Average 26 88 NA � ¼100 100 100 100 100 100

SF ¼ 0:67SPCA þ 0:33Sdist
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Figure 4. Clustering performance using similarity factor for

the CSTR example. SF ¼ 0:67S�PCA þ 0:33Sdist.2The optimum number was found to be six.
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Table XV compares the results obtained by clustering PCA

scores of X data and the results obtained by clustering using

similarity factors. Clearly, clustering using similarity factors

produces superior results because � is larger for the similar-

ity factor method while the p values are close to each other.

6. CONCLUSIONS

A new methodology for clustering of multivariate time-

series datasets has been presented and evaluated for two

simulation case studies. The proposed methodology uses

similarity factors to characterize the degree of dissimilarity

between datasets. A new similarity factor to compare pro-

duct quality data for different datasets has also been

presented. The clustering algorithm can group datasets

based on both frequently measured process data and addi-

tional attributes such as product quality data. A novel,

simple procedure is proposed for estimating the optimum

number of clusters in the data. Two case studies for a

simulated nonlinear batch fermenter and a nonlinear

exothermic chemical reactor have shown that the new pro-

posed methodology using similarity factors is very effective

in clustering multivariate time-series datasets and is super-

ior to existing methodologies.
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