Corrections for Next Printing Process Dynamics and Control, $2^{\text {nd }}$ Edition (2004) by Seborg, Edgar, and Mellichamp

Page	Item
xiv	Section 19.3: Change the title to "Unconstrained and Constrained Optimization".
23	After "For case (b)": In the first equation, add a left parenthesis before " 200 ". For "(c)": In the first equation, add a left parenthesis before " 500 ".
27	Item 2: After "thus,", insert: " $w_{i}=\mathrm{w}$ and"
29	$\text { In (2-46), replace " } Q \text { " by " } \frac{Q}{\rho C V} \text { ". }$
31	First line: add a left parenthesis before "2-48)". Change " 0.5 min " to " 1.0 min " on the right sides of the expressions for $m_{e} C_{e} / h_{e} A_{e}$ and $m_{e} C_{e} / w C$.
31	In the first equation of the "Solution": Change the minus sign to an equals sign.
48	Exercise 2.10: Add " k_{1} " above the left arrow and " k_{2} " above the right arrow. In (ii), in the equation for r_{2}, change " c_{A} " to " c_{B} ". Finally, reduce the space between " h " and " L " by half, in both equations
56	Eq. (3-22): Add a minus sign after the first equals sign on the RHS.
76	Exercise 3.16: The correct wording below the equation is: "has initial conditions, $y(0)=1, \frac{d y}{d t}(0)=2$."
76	Exercise 3.17:In the $3{ }^{\text {rd }}$ line: After "operator", insert: " shuts off the pure water flow and" In the $4{ }^{\text {th }}$ line, add "with" after "but". Also, in the "Data" section, change c_{i} to \bar{c}_{i}.
82	$1^{\text {st }}$ equation: Replace " $X_{1}^{\prime}(s)$ " by " $X^{\prime}(s)$ " Eq. (4-22): remove minus sign before 0.0531 .
83	Eq. (4-25): Replace the equals sign in the bracketed term by a minus sign.
85	Two lines below (4-41): Change " $d x / d t$ " to " $d u / d t$ "
86	Two lines above Fig. 4.2: change " Y_{3} " to " Y_{2} ".

89	Example 4.5: Change the $1^{\text {st }}$ line below Eq. (2-18) to: "Now we assume that $x_{2}=1$, the volume of liquid remains constant, and..."
90	Eq. (4-65): The right side of each of these four equations should be divided by " $V \rho$ ".
91	Replace the sentence above Eq. (4-66) by: "Combining (4-64) and (4-65) and multiplying by $V \rho$ gives:"
99	Exercise 4.1, part (d): Change "the term" to "a term". Also, change "contain" to "contains".
117	$2^{\text {nd }}$ line below (5-51): The sentence should begin as, "Thus, when ..."
123	Exercise 5.2: Change the first sentence to read: "A heater for a semiconductor wafer has first-order dynamics;".
130	Second line from the bottom: Change "Eq. 6-20" to "Eq. 6-2".
182	Exercise 7.2: In the line above (a), change "four" to "three".
184	Part (a) of Exercise 7.10: Insert the following statement at the beginning: A process output temperature T is measured for a step change in input flow rate w equal to $80 \mathrm{~kg} / \mathrm{min}$. The temperature change is shown in Fig. E7.10. Part (b) of Exercise 7.10: Change Q^{\prime} to w^{\prime}.
196	Omit "s" in the denominator of the integral term.
201	Replace the last two sentences below (8-29) by: "When the set point is constant, it cancels out in both the proportional and derivative error terms. Thus, if the integral mode is omitted, the response to a disturbance will tend to drift away from the set point."
218	$3{ }^{\text {rd }}$ line below Eq. (9-4): Delete "However, signal level."
282	2 lines below Eq (11-88): The inequality should be: $K_{C} K_{v} K_{p}>-1$.
285	5 lines above 11.4.3: Change "Example 14.5" to "Example 14.6".
287	Solution, 5 lines from top: Replace " $K_{c}=15$ " by " $K_{c}=K_{c m}=15$ "
290	Exercise 11.2: In the $3^{\text {rd }}$ line, before "and", add, " $K_{I P}=0.75 \mathrm{psi} / \mathrm{mA}$,". Also, change " $K_{c}=4$ " to " $K_{c}=5.33$ ".
293	Exercise 11.11: Under "Composition Transmitter Data", change "neglible" to negligible,"
308	Case L: In the denominator of the $2^{\text {nd }}$ column, replace τ_{e} with τ_{3}.
340	5 lines below Section 13.3: change the formula for f to: $f=\omega / 2 \pi$

342	Revision of Table 13.3 (see attached)
352	The last equation should be numbered (13-67).
373	Eqs. (14-13) and (14-14): Replace " ω_{c} " by " ω_{g} ".
375	Add a $4^{\text {th }}$ column to the last table. The column heading is " $\omega_{\mathrm{g}}(\mathrm{rad} / \mathrm{min})$ ". The number in the "Ziegler-Nichols" row is " 1.02 "; the number in the "Tyreus-Luyben" row is " 0.79 ".
385	Part (b) of Exercise 14.3. Change the last part of the first sentence to read: "... provide a phase margin of 30°. What is the gain margin?"
400	In the "Solution", change " $K_{v}=300 / 1.2$ " to " $K_{v}=300 / 12$ ". In Eq. (15-30), change " 0.1083 " to "1.083".
404	Figure 15.14: Change FB to AC (inside the circle)
421	$2^{\text {nd }}$ line from top: Replace the wording after "system" with: "for P-only control, but not necessarily for PI control (cf. Example 14.4)."
421	$88^{\text {th }}$ line from top: Change "process gain delay" to "process gain".
436	Last line of Exercise 16.4; change $T_{c 1}$ to $\tau_{c 1}$ and $T_{c 2}$ to $\tau_{c 2}$.
436	Exercise 16.7: Add a computer symbol to the exercise.
478	3 lines below (18-6): Change "Section 6.7" to "Section 6.5".
479	$4^{\text {th }}$ line below Fig. 18.3: Remove the space in "hidd en".
483	Equation for a_{1} : Replace " +8 " with "-37".
493	$1^{\text {st }}$ line below Eq. (18-57): Replace " 4 " by " W ".
518	Section 19.3: Change title to "UNCONSTRAINED AND CONSTRAINED OPTIMIZATION".
520	Section heading, 19.3.2: Omit "Unconstrained".
533	Add computer symbol to Exercise 19.13.
537	Example 20.1, part (b): Change " $\theta=2 \mathrm{~min} "$ to " $\theta=3 \mathrm{~min} "$. Also, change " $t=3 \mathrm{~min}$ " to " $t=2 \mathrm{~min}$ ".
543	Change the second inequality in (20-28) to: " $4<t \leq 10 \mathrm{~min}$ ".
588	Left column: Change "Khourti" to "Kourti".

590	Exercise 21.9: At the end, add: "For the CUSUM chart, use: $K=0.5 s$ and $H=5 s$ where s is the sample standard deviation. For the EWMA chart, use $\lambda=0.25$."
596	Caption for Table 22.1: Change "Tale" to "Table".
599	Line 3: change "22.7" to "22.6". Also, in line 5, change "opened" to "open".
598-601	TFE will send revised figures to Wiley.
666	Exercise 24.4(b), last line: Change " 24.8 " to " 24.7 ".
698	Modeling Assumptions, in items \# 2,4, and 5: Change " V_{R} " to "Volume V_{R} ", " V_{F} " to "Volume V_{F} ", and " V_{R} " to "Volume V_{T} ".

\% Revision of Table 13.3

$\mathrm{s}=\operatorname{tf}($'s');
$\mathrm{G}=5 /\left(10^{*} \mathrm{~s}+1\right) ; \quad$ \% Define transfer function
$\mathrm{ww}=$ logspace $(-3,1,100) ; \quad$ \% Define frequencies
[mag,phase,ww] = bode(G,ww); \% Calculate frequency response
for $\mathrm{i}=1$:size $(\mathrm{ww}, 1) \quad$ \% Restructure mag and phase
$\operatorname{mag} 2(\mathrm{i}, 1)=\operatorname{mag}(1,1, \mathrm{i})$;
phase2 $(\mathrm{i}, 1)=\operatorname{phase}(1,1, \mathrm{i})$;
end
figure(1) \% Plot results
subplot($2,1,1$)
$\log \log (\mathrm{ww}, \mathrm{mag} 2) ;$
axis ([0.001 100.0110$])$;
title('Frequency Response for a 1st Order System')
ylabel('AR')
subplot(2,1,2)
semilogx(ww,phase2);
axis ([0.001 10-90 0]);
ylabel('Phase Angle (degrees)')
xlabel('Frequency (rad/s)')

