Frequency Response Analysis

Sinusoidal Forcing of a First-Order Process

For a first-order transfer function with gain K and time constant τ, the response to a general sinusoidal input, $x(t) = A \sin \omega t$ is:

$$y(t) = \frac{KA}{\omega^2 \tau^2 + 1} \left(\omega \tau e^{-t/\tau} - \omega \tau \cos \omega t + \sin \omega t \right) \quad (5-25)$$

Note that $y(t)$ and $x(t)$ are in deviation form. The long-time response, $y_\ell(t)$, can be written as:

$$y_\ell(t) = \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}} \sin (\omega t + \varphi) \text{ for } t \to \infty \quad (13-1)$$

where:

$$\varphi = -\tan^{-1}(\omega \tau)$$
Figure 13.1 Attenuation and time shift between input and output sine waves ($K=1$). The phase angle φ of the output signal is given by $\varphi = -\frac{\text{Time shift}}{P \times 360^\circ}$, where Δt is the (period) shift and P is the period of oscillation.
Chapter 13

Frequency Response Characteristics of a First-Order Process

For \(x(t) = A \sin \omega t \), \(y_\ell(t) = \hat{A} \sin(\omega t + \phi) \) as \(t \to \infty \) where:

\[
\hat{A} = \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}} \quad \text{and} \quad \phi = -\tan^{-1}(\omega \tau)
\]

1. The output signal is a sinusoid that has the same frequency, \(\omega \), as the input signal, \(x(t) = A \sin \omega t \).

2. The amplitude of the output signal, \(\hat{A} \), is a function of the frequency \(\omega \) and the input amplitude, \(A \):

\[
\hat{A} = \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}} \quad (13-2)
\]

3. The output has a phase shift, \(\phi \), relative to the input. The amount of phase shift depends on \(\omega \).
Dividing both sides of (13-2) by the input signal amplitude A yields the amplitude ratio (AR)

$$AR = \frac{\hat{A}}{A} = \frac{K}{\sqrt{\omega^2 \tau^2 + 1}} \quad (13-3a)$$

which can, in turn, be divided by the process gain to yield the normalized amplitude ratio (AR$_N$)

$$AR_N = \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} \quad (13-3b)$$
Shortcut Method for Finding the Frequency Response

The shortcut method consists of the following steps:

Step 1. Set \(s = j\omega \) in \(G(s) \) to obtain \(G(j\omega) \).

Step 2. Rationalize \(G(j\omega) \); We want to express it in the form:

\[
G(j\omega) = R + jI
\]
where \(R \) and \(I \) are functions of \(\omega \). Simplify \(G(j\omega) \) by multiplying the numerator and denominator by the complex conjugate of the denominator.

Step 3. The amplitude ratio and phase angle of \(G(s) \) are given by:

\[
\text{AR} = \sqrt{R^2 + I^2}
\]

\[
\varphi = \tan^{-1}(I/R)
\]

Memorize ⇒
Example 13.1

Find the frequency response of a first-order system, with

\[G(s) = \frac{1}{\tau s + 1} \quad \text{(13-16)} \]

Solution

First, substitute \(s = j\omega \) in the transfer function

\[G(j\omega) = \frac{1}{j\omega \tau + 1} = \frac{1}{j\omega \tau + 1} \quad \text{(13-17)} \]

Then multiply both numerator and denominator by the complex conjugate of the denominator, that is, \(-j\omega \tau + 1\)

\[G(j\omega) = \frac{-j\omega \tau + 1}{(j\omega \tau + 1)(-j\omega \tau + 1)} = \frac{-j\omega \tau + 1}{\omega^2 \tau^2 + 1} \]

\[= \frac{1}{\omega^2 \tau^2 + 1} + j \frac{-\omega \tau}{\omega^2 \tau^2 + 1} = R + jI \quad \text{(13-18)} \]
where:

\[R = \frac{1}{\omega^2 \tau^2 + 1} \] \hspace{1cm} (13-19a)

\[I = \frac{-\omega \tau}{\omega^2 \tau^2 + 1} \] \hspace{1cm} (13-19b)

From Step 3 of the Shortcut Method,

\[AR = \sqrt{R^2 + I^2} = \sqrt{\left(\frac{1}{\omega^2 \tau^2 + 1}\right)^2 + \left(\frac{-\omega \tau}{\omega^2 \tau^2 + 1}\right)^2} \]

or

\[AR = \frac{\sqrt{\left(1 + \omega^2 \tau^2\right)^2}}{\sqrt{(\omega^2 \tau^2 + 1)^2}} = \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} \] \hspace{1cm} (13-20a)

Also,

\[\varphi = \tan^{-1}\left(\frac{I}{R}\right) = \tan^{-1}(-\omega \tau) = -\tan^{-1}(\omega \tau) \] \hspace{1cm} (13-20b)
Consider a complex transfer function $G(s)$,

$$G(s) = \frac{G_a(s)G_b(s)G_c(s)\ldots}{G_1(s)G_2(s)G_3(s)\ldots}$$ \hspace{1cm} (13-22)

Substitute $s=j\omega$,

$$G(j\omega) = \frac{G_a(j\omega)G_b(j\omega)G_c(j\omega)\ldots}{G_1(j\omega)G_2(j\omega)G_3(j\omega)\ldots}$$ \hspace{1cm} (13-23)

From complex variable theory, we can express the magnitude and angle of $G(j\omega)$ as follows:

$$|G(j\omega)| = \left|\frac{G_a(j\omega)}{G_1(j\omega)}\right|\left|\frac{G_b(j\omega)}{G_2(j\omega)}\right|\left|\frac{G_c(j\omega)}{G_3(j\omega)}\right|\ldots$$ \hspace{1cm} (13-24a)

$$\angle G(j\omega) = \angle G_a(j\omega) + \angle G_b(j\omega) + \angle G_c(j\omega) + \ldots - [\angle G_1(j\omega) + \angle G_2(j\omega) + \angle G_3(j\omega) + \ldots]$$ \hspace{1cm} (13-24b)
Bode Diagrams

- A special graph, called the *Bode diagram* or *Bode plot*, provides a convenient display of the frequency response characteristics of a transfer function model. It consists of plots of AR and φ as a function of ω.

- Ordinarily, ω is expressed in units of radians/time.

Bode Plot of A First-order System

Recall:

$$AR_N = \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} \quad \text{and} \quad \varphi = -\tan^{-1}(\omega \tau)$$

- **At low frequencies** ($\omega \to 0$ and $\omega \tau \ll 1$):
 $$AR_N = 1 \quad \text{and} \quad \varphi = 0$$

- **At high frequencies** ($\omega \to \infty$ and $\omega \tau \gg 1$):
 $$AR_N = \frac{1}{\omega \tau} \quad \text{and} \quad \varphi = -90^\circ$$
Figure 13.2 Bode diagram for a first-order process.
• Note that the asymptotes intersect at $\omega = \omega_b = 1/\tau$, known as the break frequency or corner frequency. Here the value of AR_N from (13-21) is:

$$AR_N(\omega = \omega_b) = \frac{1}{\sqrt{1+1}} = 0.707 \quad (13-30)$$

• Some books and software defined AR differently, in terms of decibels. The amplitude ratio in decibels AR_d is defined as

$$AR_d = 20 \log AR \quad (13-33)$$
Integrating Elements

The transfer function for an integrating element was given in Chapter 5:

\[
G(s) = \frac{Y(s)}{U(s)} = \frac{K}{s} \quad \text{(5-34)}
\]

\[
\text{AR} = |G(j\omega)| = \left| \frac{K}{j\omega} \right| = \frac{K}{\omega} \quad \text{(13-34)}
\]

\[
\varphi = \angle G(j\omega) = \angle K - \angle(\infty) = -90^\circ \quad \text{(13-35)}
\]

Second-Order Process

A general transfer function that describes any underdamped, critically damped, or overdamped second-order system is

\[
G(s) = \frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1} \quad \text{(13-40)}
\]
Substituting \(s = j\omega \) and rearranging yields:

\[
AR = \frac{K}{\sqrt{(1 - \omega^2 \tau^2)^2 + (2\omega \tau \zeta)^2}}
\] \hspace{1cm} (13-41a)

\[
\phi = \tan^{-1}\left[\frac{-2\omega \tau \zeta}{1 - \omega^2 \tau^2} \right]
\] \hspace{1cm} (13-41b)

Figure 13.3 Bode diagrams for second-order processes.
Time Delay

Its frequency response characteristics can be obtained by substituting \(s = j\omega \),

\[
G(j\omega) = e^{-j\omega \theta} \quad (13-53)
\]

which can be written in rational form by substitution of the Euler identity,

\[
G(j\omega) = e^{-j\omega \theta} = \cos \omega \theta - j \sin \omega \theta \quad (13-54)
\]

From (13-54)

\[
\text{AR} = |G(j\omega)| = \sqrt{\cos^2 \omega \theta + \sin^2 \omega \theta} = 1 \quad (13-55)
\]

\[
\phi = \angle G(j\omega) = \tan^{-1} \left(-\frac{\sin \omega \theta}{\cos \omega \theta} \right)
\]

or

\[
\phi = -\omega \theta \quad (13-56)
\]
Figure 13.6 Bode diagram for a time delay, $e^{-\theta s}$.
Figure 13.7 Phase angle plots for $e^{-\theta s}$ and for the 1/1 and 2/2 Padé approximations (G_1 is 1/1; G_2 is 2/2).
Consider a process zero term,

\[G(s) = K(s\tau + 1) \]

Substituting \(s=j\omega \) gives

\[G(j\omega) = K(j\omega\tau + 1) \]

Thus:

\[\text{AR} = \left| G(j\omega) \right| = K\sqrt{\omega^2\tau^2 + 1} \]

\[\phi = \angle G(j\omega) = + \tan^{-1}(\omega\tau) \]

Note: In general, a multiplicative constant (e.g., \(K \)) changes the AR by a factor of \(K \) without affecting \(\phi \).
Frequency Response Characteristics of Feedback Controllers

Proportional Controller. Consider a proportional controller with positive gain

\[G_c(s) = K_c \] \hspace{1cm} (13-57)

In this case \(|G_c(j\omega)| = K_c \), which is independent of \(\omega \). Therefore,

\[AR_c = K_c \] \hspace{1cm} (13-58)

and

\[\phi_c = 0^\circ \] \hspace{1cm} (13-59)
Proportional-Integral Controller. A proportional-integral (PI) controller has the transfer function (cf. Eq. 8-9),

\[G_c(s) = K_c \left(1 + \frac{1}{\tau_I s} \right) = K_c \left(\frac{\tau_I s + 1}{\tau_I s} \right) \quad (13-60) \]

Substitute \(s = j\omega \):

\[G_c(j\omega) = K_c \left(1 + \frac{1}{\tau_I j\omega} \right) = K_c \left(\frac{j\omega\tau_I + 1}{j\omega\tau_I} \right) = K_c \left(1 - \frac{1}{\tau_I \omega} j \right) \]

Thus, the amplitude ratio and phase angle are:

\[\text{AR}_c = |G_c(j\omega)| = K_c \sqrt{1 + \frac{1}{(\omega\tau_I)^2}} = K_c \frac{\sqrt{(\omega\tau_I)^2 + 1}}{\omega\tau_I} \quad (13-62) \]

\[\phi_c = \angle G_c(j\omega) = \tan^{-1}\left(-1/\omega\tau_I\right) = \tan^{-1}\left(\omega\tau_I\right) - 90^\circ \quad (13-63) \]
Figure 13.9 Bode plot of a PI controller, $G_c(s) = 2\left(\frac{10s+1}{10s}\right)$
Ideal Proportional-Derivative Controller. For the ideal proportional-derivative (PD) controller (cf. Eq. 8-11)

\[G_c(s) = K_c (1 + \tau_D s) \quad (13-64) \]

The frequency response characteristics are similar to those of a LHP zero:

\[AR_c = K_c \sqrt{(\omega \tau_D)^2 + 1} \quad (13-65) \]

\[\varphi = \tan^{-1}(\omega \tau_D) \quad (13-66) \]

Proportional-Derivative Controller with Filter. The PD controller is most often realized by the transfer function

\[G_c(s) = K_c \left(\frac{\tau_D s + 1}{\alpha \tau_D s + 1} \right) \quad (13-67) \]
Figure 13.10 Bode plots of an ideal PD controller and a PD controller with derivative filter.

Idea: \(G_c(s) = 2(4s + 1) \)

With Derivative Filter:
\[
G_c(s) = 2\left(\frac{4s + 1}{0.4s + 1}\right)
\]

PID Controller Forms

Parallel PID Controller. The simplest form in Ch. 8 is

\[
G_c(s) = K_c \left(1 + \frac{1}{\tau_1 s} + \tau_D s \right)
\]

Series PID Controller. The simplest version of the series PID controller is

\[
G_c(s) = K_c \left(\frac{\tau_1 s + 1}{\tau_1 s} \right) (\tau_D s + 1) \quad (13-73)
\]

Series PID Controller with a Derivative Filter.

\[
G_c(s) = K_c \left(\frac{\tau_1 s + 1}{\tau_1 s} \right) \left(\frac{\tau_D s + 1}{\alpha \tau_D s + 1} \right)
\]
Figure 13.11 Bode plots of ideal parallel PID controller and series PID controller with derivative filter ($\alpha = 1$).

Idea parallel:

$$G_c(s) = 2 \left(1 + \frac{1}{10s} + 4s \right)$$

Series with Derivative Filter:

$$G_c(s) = 2 \left(\frac{10s + 1}{10s} \right) \left(\frac{4s + 1}{0.4s + 1} \right)$$
Consider the transfer function

\[
G(s) = \frac{1}{2s + 1}
\]

(13-76)

with

\[
AR = |G(j\omega)| = \frac{1}{\sqrt{(2\omega)^2 + 1}}
\]

(13-77a)

and

\[
\varphi = \angle G(j\omega) = -\tan^{-1}(2\omega)
\]

(13-77b)
Figure 13.12 The Nyquist diagram for $G(s) = \frac{1}{2s + 1}$ plotting $\text{Re}(G(j\omega))$ and $\text{Im}(G(j\omega))$.
Figure 13.13 The Nyquist diagram for the transfer function in Example 13.5:

\[G(s) = \frac{5(8s + 1)e^{-6s}}{(20s + 1)(4s + 1)} \]