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Control System Design Based on 
Frequency Response Analysis

Frequency response concepts and techniques play an important 
role in control system design and analysis. 

Closed-Loop Behavior
In general, a feedback control system should satisfy the following 
design objectives:

1. Closed-loop stability

2. Good disturbance rejection (without excessive control action) 

3. Fast set-point tracking (without excessive control action)

4. A satisfactory degree of robustness to process variations and 
model uncertainty

5. Low sensitivity to measurement noise
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• The block diagram of a general feedback control system is 
shown in Fig. 14.1.

• It contains three external input signals: set point Ysp, disturbance 
D, and additive measurement noise, N.

(14-1)
1 1 1

m c v pd c
sp

c c c

K G G GG G GY D N Y
G G G G G G

= − +
+ + +

(14-2)
1 1 1

d m m m
sp

c c c

G G G KE D N Y
G G G G G G

= − − +
+ + +

(14-3)
1 1 1
d m c v m c v m c v

sp
c c c

G G G G G G G K G GU D N Y
G G G G G G

= − − +
+ + +

where  G    GvGpGm.
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Figure 14.1 Block diagram with a disturbance D and 
measurement noise N.
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Example 14.1
Consider the feedback system in Fig. 14.1 and the following 
transfer functions:

0.5 , 1
1 2p d v mG G G G

s
= = = =

−

Suppose that controller Gc is designed to cancel the unstable 
pole in Gp:

3 (1 2 )
1c

sG
s
−

= −
+

Evaluate closed-loop stability and characterize the output 
response for a sustained disturbance. 
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Solution

The characteristic equation, 1 + GcG = 0, becomes:

3 (1 2 ) 0.51 0
1 1 2

s
s s
−

+ =
+ −

or
2.5 0s + =

In view of the single root at s = -2.5, it appears that the closed-
loop system is stable. However, if we consider Eq. 14-1 for    
N = Ysp = 0,

( )0.5 1
1 (1 2 )( 2.5)

d

c

sGY D D
G G s s

− +
= =

+ − +



6

C
ha

pt
er

 1
4

• This transfer function has an unstable pole at s = +0.5. Thus, 
the output response to a disturbance is unstable. 

• Furthermore, other transfer functions in (14-1) to (14-3) also 
have unstable poles. 

• This apparent contradiction occurs because the characteristic 
equation does not include all of the information, namely, the 
unstable pole-zero cancellation.

Example 14.2
Suppose that Gd = Gp, Gm = Km and that Gc is designed so that the 
closed-loop system is stable and  |GGc | >> 1 over the frequency 
range of interest. Evaluate this control system design strategy for 
set-point changes, disturbances, and measurement noise. Also 
consider the behavior of the manipulated variable, U.
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Solution

Because  |GGc | >> 1,

1 0 and 1
1 1

c

c c

G G
G G G G

≈ ≈
+ +

The first expression and (14-1) suggest that the output response 
to disturbances will be very good because Y/D ≈ 0. Next, we 
consider set-point responses. From Eq. 14-1,

1
m c v p

sp c

K G G GY
Y G G

=
+

Because Gm = Km, G = GvGpKm and the above equation can be 
written as, 

1
c

sp c

G GY
Y G G

=
+
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For |GGc | >> 1,

1
sp

Y
Y

≈

Thus, ideal (instantaneous) set-point tracking would occur. 
Choosing Gc so that |GGc| >> 1 also has an undesirable 
consequence. The output Y becomes sensitive to noise because 
Y ≈ - N (see the noise term in Eq. 14-1). Thus, a design tradeoff 
is required. 

Bode Stability Criterion
The Bode stability criterion has two important advantages in 
comparison with the Routh stability criterion of Chapter 11:
1. It provides exact results for processes with time delays, while 

the Routh stability criterion provides only approximate results 
due to the polynomial approximation that must be substituted 
for the time delay.
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2. The Bode stability criterion provides a measure of the relative 
stability rather than merely a yes or no answer to the question, 
“Is the closed-loop system stable?”

Before considering the basis for the Bode stability criterion, it is 
useful to review the General Stability Criterion of Section 11.1:

A feedback control system is stable if and only if all roots of the 
characteristic equation lie to the left of the imaginary axis in the 
complex plane.

Before stating the Bode stability criterion, we need to introduce 
two important definitions:

1. A critical frequency is defined to be a value of for 
which                           . This frequency is also referred to as 
a phase crossover frequency.

2. A gain crossover frequency       is defined to be a value of    
for which . 

ωc ω
( )φ ω 180OL = −

ωg ω
( )ω 1OLAR =



10

C
ha

pt
er

 1
4

For many control problems, there is only a single      and a 
single     . But multiple values can occur, as shown in Fig. 14.3 
for      .

ωc
ωg

ωc

Figure 14.3 Bode plot exhibiting multiple critical frequencies.
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Bode Stability Criterion. Consider an open-loop transfer function 
GOL=GcGvGpGm that is strictly proper (more poles than zeros) 
and has no poles located on or to the right of the imaginary axis, 
with the possible exception of a single pole at the origin. Assume 
that the open-loop frequency response has only a single critical 
frequency       and a single gain crossover frequency      . Then the 
closed-loop system is stable if AROL(     ) < 1. Otherwise it is 
unstable.

ωc ωg
ωc

Some of the important properties of the Bode stability criterion
are:

1. It provides a necessary and sufficient condition for closed-
loop stability based on the properties of the open-loop transfer 
function.

2. Unlike the Routh stability criterion of Chapter 11, the Bode 
stability criterion is applicable to systems that contain time 
delays.
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3. The Bode stability criterion is very useful for a wide range of 
process control problems. However, for any GOL(s) that does 
not satisfy the required conditions, the Nyquist stability 
criterion of Section 14.3 can be applied.

4. For systems with multiple      or       , the Bode stability 
criterion has been modified by Hahn et al. (2001) to provide a 
sufficient condition for stability.

ωc ωg

• In order to gain physical insight into why a sustained oscillation 
occurs at the stability limit, consider the analogy of an adult 
pushing a child on a swing. 

• The child swings in the same arc as long as the adult pushes at 
the right time, and with the right amount of force. 

• Thus the desired “sustained oscillation” places requirements on 
both timing (that is, phase) and applied force (that is, 
amplitude). 
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• By contrast, if either the force or the timing is not correct, the 
desired swinging motion ceases, as the child will quickly 
exclaim. 

• A similar requirement occurs when a person bounces a ball.

• To further illustrate why feedback control can produce 
sustained oscillations, consider the following “thought 
experiment” for the feedback control system in Figure 14.4. 
Assume that the open-loop system is stable and that no 
disturbances occur (D = 0). 

• Suppose that the set point is varied sinusoidally at the critical 
frequency, ysp(t) = A sin(ωct), for a long period of time.

• Assume that during this period the measured output, ym, is 
disconnected so that the feedback loop is broken before the 
comparator. 
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Figure 14.4 Sustained oscillation in a feedback control system.
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• After the initial transient dies out, ym will oscillate at the 
excitation frequency ωc because the response of a linear system 
to a sinusoidal input is a sinusoidal output at the same frequency 
(see Section 13.2). 

• Suppose that two events occur simultaneously: (i) the set point 
is set to zero and, (ii) ym is reconnected. If the feedback control 
system is marginally stable, the controlled variable y will then 
exhibit a sustained sinusoidal oscillation with amplitude A and 
frequency ωc.

• To analyze why this special type of oscillation occurs only when
ω = ωc, note that the sinusoidal signal E in Fig. 14.4 passes 
through transfer functions Gc, Gv, Gp, and Gm before returning to 
the comparator. 

• In order to have a sustained oscillation after the feedback loop is 
reconnected, signal Ym must have the same amplitude as E and a 
-180° phase shift relative to E. 
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• Note that the comparator also provides a -180° phase shift due 
to its negative sign.

• Consequently, after Ym passes through the comparator, it is in 
phase with E and has the same amplitude, A. 

• Thus, the closed-loop system oscillates indefinitely after the 
feedback loop is closed because the conditions in Eqs. 14-7 
and 14-8 are satisfied. 

• But what happens if Kc is increased by a small amount? 

• Then, AROL(ωc) is greater than one and the closed-loop system 
becomes unstable. 

• In contrast, if Kc is reduced by a small amount, the oscillation 
is “damped” and eventually dies out. 
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Example 14.3
A process has the third-order transfer function (time constant in 
minutes),

3
2( )

(0.5 1)p sG
s

=
+

Also, Gv = 0.1 and Gm = 10. For a proportional controller, 
evaluate the stability of the closed-loop control system using the 
Bode stability criterion and three values of Kc: 1, 4, and 20. 

Solution

For this example,

3 3
2 2( )(0.1) (10)

(0.5 1) (0.5 1)
c

cOL c v p m
KG G G G G K

s s
= = =

+ +
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Figure 14.5 shows a Bode plot of GOL for three values of Kc. 
Note that all three cases have the same phase angle plot because
the phase lag of a proportional controller is zero for Kc > 0. 

Next, we consider the amplitude ratio AROL for each value of Kc. 
Based on Fig. 14.5, we make the following classifications: 

Unstable520
Marginally stable14
Stable0.251

ClassificationKc ( )for ω ωOL cAR =
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Figure 14.5 Bode plots for GOL = 2Kc/(0.5s+1)3.



20

C
ha

pt
er

 1
4

In Section 12.5.1 the concept of the ultimate gain was introduced. 
For proportional-only control, the ultimate gain Kcu was defined to 
be the largest value of Kc that results in a stable closed-loop 
system. The value of Kcu can be determined graphically from a 
Bode plot for transfer function G = GvGpGm. For proportional-
only control, GOL= KcG. Because a proportional controller has 
zero phase lag if Kc > 0, ωc is determined solely by G. Also, 

AROL(ω)=Kc ARG(ω)                          (14-9)

where ARG denotes the amplitude ratio of G. At the stability limit, 
ω = ωc, AROL(ωc) = 1 and Kc= Kcu. Substituting these expressions 
into (14-9) and solving for Kcu gives an important result:

1 (14-10)
(ω )cu

G c
K

AR
=

The stability limit for Kc can also be calculated for PI and PID
controllers, as demonstrated by Example 14.4. 
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Nyquist Stability Criterion
• The Nyquist stability criterion is similar to the Bode criterion 

in that it determines closed-loop stability from the open-loop 
frequency response characteristics. 

• The Nyquist stability criterion is based on two concepts from 
complex variable theory, contour mapping and the Principle 
of the Argument. 

Nyquist Stability Criterion. Consider an open-loop transfer 
function GOL(s) that is proper and has no unstable pole-zero 
cancellations. Let N be the number of times that the Nyquist plot 
for GOL(s) encircles the -1 point in the clockwise direction. Also 
let P denote the number of poles of GOL(s) that lie to the right of 
the imaginary axis. Then, Z = N + P where Z is the number of 
roots of the characteristic equation that lie to the right of the 
imaginary axis (that is, its number of “zeros”). The closed-loop 
system is stable if and only if Z = 0.
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Some important properties of the Nyquist stability criterion are:

1. It provides a necessary and sufficient condition for closed-
loop stability based on the open-loop transfer function.

2. The reason the -1 point is so important can be deduced from 
the characteristic equation, 1 + GOL(s) = 0. This equation can 
also be written as GOL(s) = -1, which implies that AROL = 1 
and                     , as noted earlier. The -1 point is referred to 
as the critical point.

3. Most process control problems are open-loop stable. For 
these situations, P = 0 and thus Z = N. Consequently, the 
closed-loop system is unstable if the Nyquist plot for GOL(s) 
encircles the -1 point, one or more times.

4. A negative value of N indicates that the -1 point is encircled 
in the opposite direction (counter-clockwise). This situation 
implies that each countercurrent encirclement can stabilize 
one unstable pole of the open-loop system.

φ 180OL = −
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5. Unlike the Bode stability criterion, the Nyquist stability 
criterion is applicable to open-loop unstable processes.

6. Unlike the Bode stability criterion, the Nyquist stability 
criterion can be applied when multiple values of       or     
occur (cf. Fig. 14.3).

ωc ωg

Example 14.6
Evaluate the stability of the closed-loop system in Fig. 14.1 for:

4( )
5 1

s

p
esG
s

−
=

+

(the time constants and delay have units of minutes)

Gv = 2,    Gm = 0.25,     Gc = Kc

Obtain ωc and Kcu from a Bode plot. Let Kc =1.5Kcu and draw 
the Nyquist plot for the resulting open-loop system. 
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Solution

The Bode plot for GOL and Kc = 1 is shown in Figure 14.7. For 
ωc = 1.69 rad/min, φOL = -180° and AROL = 0.235. For Kc = 1, 
AROL = ARG and Kcu can be calculated from Eq. 14-10. Thus,   
Kcu = 1/0.235 = 4.25. Setting Kc = 1.5Kcu gives Kc = 6.38. 

Figure 14.7 
Bode plot for 
Example 14.6, 
Kc = 1.
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Figure 14.8 Nyquist
plot for Example 14.6, 
Kc = 1.5Kcu = 6.38.
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Gain and Phase Margins
Let ARc be the value of the open-loop amplitude ratio at the 
critical frequency     . Gain margin GM is defined as:ωc

1 (14-11)
c

GM
AR

Phase margin PM is defined as

180 φ (14-12)gPM +

• The phase margin also provides a measure of relative stability. 

• In particular, it indicates how much additional time delay can be 
included in the feedback loop before instability will occur. 

• Denote the additional time delay as           . 

• For a time delay of            , the phase angle is             . 
maxθ∆

maxθ∆ maxθ ω−∆
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Figure 14.9 Gain 
and phase margins 
in Bode plot.
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max c
180= θ ω (14-13)PM
π

 
∆   

 or

max
c

PMθ = (14-14)
ω 180

π  ∆   
  

where the                 factor converts PM from degrees to radians.( )/180π

• The specification of phase and gain margins requires a 
compromise between performance and robustness. 

• In general, large values of GM and PM correspond to sluggish 
closed-loop responses, while smaller values result in less 
sluggish, more oscillatory responses.

Guideline. In general, a well-tuned controller should have a gain 
margin between 1.7 and 4.0 and a phase margin between 30° and 
45°.
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Figure 14.10 Gain and phase margins on a Nyquist plot.
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Recognize that these ranges are approximate and that it may not 
be possible to choose PI or PID controller settings that result in 
specified GM and PM values.

Example 14.7
For the FOPTD model of Example 14.6, calculate the PID
controller settings for the two tuning relations in Table 12.6:

1. Ziegler-Nichols

2. Tyreus-Luyben

Assume that the two PID controllers are implemented in the 
parallel form with a derivative filter (α = 0.1). Plot the open-loop 
Bode diagram and determine the gain and phase margins for each 
controller.
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Figure 14.11 
Comparison of GOL
Bode plots for 
Example 14.7.
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For the Tyreus-Luyben settings, determine the maximum 
increase in the time delay            that can occur while still
maintaining closed-loop stability.

Solution

From Example 14.6, the ultimate gain is Kcu = 4.25 and the 
ultimate period is Pu =                                 . Therefore, the PID
controllers have the following settings:

maxθ∆

2 /1.69 3.72 minπ =

0.598.271.91Tyreus-
Luyben

0.461.862.55Ziegler-
Nichols

(min)(min)Kc

Controller
Settings

τI τD
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The open-loop transfer function is:

2
5 1

seG G G G G GOL c v p m c s

−
= =

+

Figure 14.11 shows the frequency response of GOL for the two 
controllers. The gain and phase margins can be determined by 
inspection of the Bode diagram or by using the MATLAB
command, margin.

0.7976°1.8Tyreus-Luyben

1.0240°1.6Ziegler-
Nichols

ωc (rad/min)PMGMController
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The Tyreus-Luyben controller settings are more conservative 
owing to the larger gain and phase margins. The value of        
is calculated from Eq. (14-14) and the information in the above 
table:

maxθ∆

max
(76°)(π rad)θ  =  = 1.7min

(0.79 rad/min)(180°)
∆

Thus, time delay    can increase by as much as 70% and still 
maintain closed-loop stability.

θ
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Figure 14.12 Nyquist plot where the gain and phase margins are 
misleading.
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Closed-Loop Frequency Response and 
Sensitivity Functions

Sensitivity Functions

The following analysis is based on the block diagram in Fig. 
14.1. We define G as                       and assume that Gm=Km and 
Gd = 1. Two important concepts are now defined:

v p mG G G G

1 sensitivity function (14-15a)
1

complementary sensitivity function (14-15b)
1

c

c

c
S

G G
G GT

G G

+

+
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Comparing Fig. 14.1 and Eq. 14-15 indicates that S is the 
closed-loop transfer function for disturbances (Y/D), while T is 
the closed-loop transfer function for set-point changes (Y/Ysp). It 
is easy to show that: 

1 (14-16)S T+ =

As will be shown in Section 14.6, S and T provide measures of 
how sensitive the closed-loop system is to changes in the 
process. 

• Let |S(j )| and |T(j )| denote the amplitude ratios of S and T, 
respectively. 

• The maximum values of the amplitude ratios provide useful 
measures of robustness. 

• They also serve as control system design criteria, as discussed 
below. 

ω ω
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• Define MS to be the maximum value of |S(j )| for all 
frequencies: 

ω

ω
max | ( ω) | (14-17)SM S j

The second robustness measure is MT, the maximum value of  
|T(j )|:ω

ω
max | ( ω) | (14-18)TM T j

MT is also referred to as the resonant peak. Typical amplitude 
ratio plots for S and T are shown in Fig. 14.13.

It is easy to prove that MS and MT are related to the gain and 
phase margins of Section 14.4 (Morari and Zafiriou, 1989):

1 1GM , PM 2sin (14-19)
1 2

S

S S

M
M M

−  
≥ ≥  −  
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Figure 14.13 Typical S and T magnitude plots. (Modified from 
Maciejowski (1998)).

Guideline. For a satisfactory control system, MT should be in the 
range 1.0 – 1.5 and MS should be in the range of 1.2 – 2.0.
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It is easy to prove that MS and MT are related to the gain and 
phase margins of Section 14.4 (Morari and Zafiriou, 1989):

1 1GM , PM 2sin (14-19)
1 2

S

S S

M
M M

−  
≥ ≥  −  

1GM 1 , PM 2sin (14-20)
2T TM M

−  
≥ + ≥  

 

1 1
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Bandwidth

• In this section we introduce an important concept, the 
bandwidth. A typical amplitude ratio plot for T and the 
corresponding set-point response are shown in Fig. 14.14. 

• The definition, the bandwidth ωBW is defined as the frequency at 
which |T(jω)| = 0.707. 

• The bandwidth indicates the frequency range for which 
satisfactory set-point tracking occurs. In particular, ωBW is the 
maximum frequency for a sinusoidal set point to be attenuated 
by no more than a factor of 0.707. 

• The bandwidth is also related to speed of response. 

• In general, the bandwidth is (approximately) inversely 
proportional to the closed-loop settling time. 
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Figure 14.14 Typical closed-loop amplitude ratio |T(jω)| and 
set-point response.
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Closed-loop Performance Criteria

Ideally, a feedback controller should satisfy the following 
criteria.
1. In order to eliminate offset,  |T(jω)|→ 1 as ω → 0. 

2. |T(jω)| should be maintained at unity up to as high as 
frequency as possible. This condition ensures a rapid 
approach to the new steady state during a set-point change.

3. As indicated in the Guideline, MT should be selected so that 
1.0 < MT < 1.5.

4. The bandwidth ωBW and the frequency ωT at which MT
occurs, should be as large as possible. Large values result in 
the fast closed-loop responses.

Nichols Chart

The closed-loop frequency response can be calculated analytically 
from the open-loop frequency response.
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Figure 14.15 A Nichols chart. [The closed-loop amplitude ratio 
ARCL (           ) and phase angle                   are shown in families 
of curves.]

( )φCL − − −
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Example 14.8
Consider a fourth-order process with a wide range of time 
constants that have units of minutes (Åström et al., 1998):

1 (14-22)
( 1)(0.2 1)(0.04 1)(0.008 1)v p mG G G G
s s s s

= =
+ + + +

Calculate PID controller settings based on following tuning 
relations in Chapter 12

a. Ziegler-Nichols tuning (Table 12.6)

b. Tyreus-Luyben tuning (Table 12.6)

c. IMC Tuning with                        (Table 12.1)τ 0.25 minc

d. Simplified IMC (SIMC) tuning (Table 12.5) and a second-
order plus time-delay model derived using Skogestad’s
model approximation method (Section 6.3).

=
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Determine sensitivity peaks MS and MT for each controller. 
Compare the closed-loop responses to step changes in the set-
point and the disturbance using the parallel form of the PID
controller without a derivative filter:

( ) 11 τ (14-23)
( ) τc D

I

P s K s
E s s

 ′
= + + 

 

Assume that Gd(s) = G(s).
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Controller Settings for Example 14.8

1.161.580.1801.2221.8Simplified 
IMC

1.001.120.1671.204.3IMC

0.089

0.070

1.45

2.38

MS

1.231.2513.6Tyreus-
Luyben

2.410.2818.1Ziegler-
Nichols

MTKcController τ (min)I τ (min)D
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Figure 14.16 Closed-loop responses for Example 14.8. (A set-
point change occurs at t = 0 and a step disturbance at t = 4 min.)
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Robustness Analysis
• In order for a control system to function properly, it should 

not be unduly sensitive to small changes in the process or to 
inaccuracies in the process model, if a model is used to design 
the control system. 

• A control system that satisfies this requirement is said to be 
robust or insensitive.

• It is very important to consider robustness as well as 
performance in control system design. 

• First, we explain why the S and T transfer functions in        
Eq. 14-15 are referred to as “sensitivity functions”.
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Sensitivity Analysis

• In general, the term sensitivity refers to the effect that a 
change in one transfer function (or variable) has on another 
transfer function (or variable). 

• Suppose that G changes from a nominal value Gp0 to an 
arbitrary new value, Gp0 + dG. 

• This differential change dG causes T to change from its 
nominal value T0 to a new value, T0 + dT. 

• Thus, we are interested in the ratio of these changes, dT/dG, 
and also the ratio of the relative changes: 

/ sensitivity (14-25)
/

dT T
dG G
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We can write the relative sensitivity in an equivalent form:

/ (14-26)
/

dT T dT G
dG G dG T

 =  
 

The derivative in (14-26) can be evaluated after substituting the 
definition of T in (14-15b):

2 (14-27)c
dT G S
dG

=

Substitute (14-27) into (14-26). Then substituting the definition of 
S in (14-15a) and rearranging gives the desired result:

/ 1 (14-28)
/ 1 c

dT T S
dG G G G

= =
+
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• Equation 14-28 indicates that the relative sensitivity is equal to 
S. 

• For this reason, S is referred to as the sensitivity function. 

• In view of the important relationship in (14-16), T is called the 
complementary sensitivity function.

Effect of Feedback Control on Relative Sensitivity

• Next, we show that feedback reduces sensitivity by comparing 
the relative sensitivities for open-loop control and closed-loop 
control. 

• By definition, open-loop control occurs when the feedback 
control loop in Fig. 14.1 is disconnected from the comparator. 

• For this condition:

(14-29)OL c
sp OL

Y T G G
Y

 
=  
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Substituting TOL for T in Eq. 14-25 and noting that dTOL/dG = Gc
gives:

/ 1 (14-30)
/

OL OL OL
c

OL c

dT T dT G GG
dG G dG T G G

 = = = 
 

• Thus, the relative sensitivity is unity for open-loop control and 
is equal to S for closed-loop control, as indicated by (14-28). 

• Equation 14-15a indicates that |S| <1 if |GcGp| > 1, which 
usually occurs over the frequency range of interest. 

• Thus, we have identified one of the most important properties 
of feedback control: 

• Feedback control makes process performance less sensitive to 
changes in the process.


