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Introduction
• Process monitoring also plays a key role in ensuring that the 

plant performance satisfies the operating objectives.

• The general objectives of process monitoring are:

1. Routine Monitoring. Ensure that process variables are 
within specified limits.

2. Detection and Diagnosis. Detect abnormal process 
operation and diagnose the root cause.

3. Preventive Monitoring. Detect abnormal situations early 
enough so that corrective action can be taken before the 
process is seriously upset.
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Figure 21.2 Countercurrent flow process.
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Traditional Monitoring Techniques

Limit Checking
Process measurements should be checked to ensure that they are 
between specified limits, a procedure referred to as limit 
checking. The most common types of measurement limits are:

1. High and low limits

2. High limit for the absolute value of the rate of change

3. Low limit for the sample variance

The limits are specified based on safety and environmental 
considerations, operating objectives, and equipment limitations.

• In practice, there are physical limitations on how much a 
measurement can change between consecutive sampling 
instances.
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• Both redundant measurements and conservation equations can 
be used to good advantage. 

• A process consisting of two units in a countercurrent flow 
configuration is shown in Fig. 21.2. 

• Three steady-state mass balances can be written, one for each 
unit plus an overall balance around both units. 

• Although the three balances are not independent, they provide 
useful information for monitoring purposes.

• Industrial processes inevitably exhibit some variability in their 
manufactured produces regardless of how well the processes 
are designed and operated.

• In statistical process control, an important distinction is made
between normal (random) variability and abnormal 
(nonrandom) variability.
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• Random variability is caused by the cumulative effects of a 
number of largely unavoidable phenomena such as electrical 
measurement noise, turbulence, and random fluctuations in 
feedstock or catalyst preparation. 

• The source of this abnormal variability is referred to as a 
special cause or an assignable cause. 

Normal Distribution

• Because the normal distribution plays a central role in SPC, 
we briefly review its important characteristics. 

• The normal distribution is also known as the Gaussian 
distribution. 
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Suppose that a random variable x has a normal distribution with a 
mean     and a variance      denoted by                 The probability 
that x has a value between two arbitrary constants, a and b, is 
given by

µ 2σ ( )2µ,σ .N

( ) ( ) (21-4)
b

a
P a x b f x dx< < = ∫

where f(x) is the probability density function for the normal 
distribution:

( ) ( )2
2

1 exp (21-5)
σ 2 20

x u
f x

π

 −
 = −
  

The following probability statements are valid for the normal 
distribution (Montgomery and Runger, 2003),

( )
( )
( )

µ σ µ σ 0.6827

µ 2σ µ 2σ 0.9545 (21-6)

µ 3σ µ 3σ 0.9973

P x

P x

P x

− < < + =

− < < + =

− < < + =
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Figure 21.3 Probabilities associated with the normal distribution 
(From Montgomery and Runger (2003)).
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• For the sake of generality, the tables are expressed in terms of
the standard normal distribution, N (0, 1), and the standard 
normal variable, 

• It is important to distinguish between the theoretical mean    ,
and the sample mean    .

• If measurements of a process variable are normally distributed, 
the sample mean is also normally distributed.

• However, for any particular sample,     is not necessarily equal
to    . 

µ
x

( )2µ,σN

x
µ

µ σ.( ) /z x −�

The     Control Chartx
In statistical process control, Control Charts (or Quality 
Control Charts) are used to determine whether the process 
operation is normal or abnormal. The widely used     control 
chart is introduced in the following example.

x
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This type of control chart is often referred to as a Shewhart
Chart, in honor of the pioneering statistician, Walter 
Shewhart, who first developed it in the 1920s.

Example 21.1
A manufacturing plant produces 10,000 plastic bottles per day. 
Because the product is inexpensive and the plant operation is 
normally satisfactory, it is not economically feasible to inspect 
every bottle. Instead, a sample of n bottles is randomly selected 
and inspected each day. These n items are called a subgroup, and 
n is referred to as the subgroup size. The inspection includes 
measuring the toughness of x of each bottle in the subgroup and 
calculating the sample mean .x
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Figure 21.4 The     control chart for Example 21.1.x
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The    control chart in Fig. 21.4 displays data for a 30-day period. 
The control chart has a target (T), an upper control limit (UCL), 
and a lower control limit (LCL). The target (or centerline) is the 
desired (or expected) value for    , while the region between UCL 
and LCL defines the range of normal variability, as discussed 
below. If all of the      data are within the control limits, the 
process operation is considered to be normal or “in a state of 
control”. Data points outside the control limits are considered to 
be abnormal, indicating that the process operation is out of 
control. This situation occurs for the twenty-first sample. A single 
measurement located slightly beyond a control limit is not 
necessarily a cause for concern. But frequent or large chart 
violations should be investigated to determine a special cause.

x

x

x
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Control Chart Development

• The first step in devising a control chart is to select a set of
representative data for a period of time when the process 
operation is believed to be normal, that is, when the process is in 
a state of control.

• Suppose that these test data consist of N subgroups that have 
been collected on a regular basis (for example, hourly or daily)
and that each subgroup consists of n randomly selected items.

• Let xij denote the jth measurement in the ith subgroup. Then, the 
subgroup sample means can be calculated:

1

1 (21-7)
n

i ij
j

x x
n =
∑� (i = 1,2,…, N) 
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The grand mean is defined to be the average of the subgroup 
means:

x

1

1 (21-8)x x
N =
∑�
N

i
i

The general expressions for the control limits are

σ (21-9)
σ (21-10)

x

x

ˆUCL T +c
ˆLCL T c-

�
�

where       is an estimate of the standard deviation for     and c is a 
positive integer; typically, c = 3.

σ̂x x

• The choice of c = 3 and Eq. 21-6 imply that the measurements 
will lie within the control chart limits 99.73% of the time, for
normal process operation.

• The target T is usually specified to be either     or the desired 
value of 

x
.x
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• The estimated standard deviation      can be calculated from the
subgroups in the test data by two methods: (1) the standard 
deviation approach, and (2) the range approach (Montgomery 
and Runger, 2003).

• By definition, the range R is the difference between the 
maximum and minimum values.

• Consequently, we will only consider the standard deviation 
approach.

σ̂x

The average sample standard deviation     for the N subgroups is:s

1

1 (21-11)s s
N =
∑�
N

i
i
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where the standard deviation for the ith subgroup is

( )2
1

1 (21-12)
1

n

i ij i
j

s x x
n =

−
− ∑�

If the x data are normally distributed, then       is related to     byσ̂x s

4

1σ̂ (21-13)x s
c n

=

where c4 is a constant that depends on n and is tabulated in Table 
21.1.
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The s Control Chart

• In addition to monitoring average process performance, it is also 
advantageous to monitor process variability.

• The variability within a subgroup can be characterized by its 
range, standard deviation, or sample variance.

• Control charts can be developed for all three statistics but our
discussion will be limited to the control chart for the standard
deviation, the s control chart. 

• The centerline for the s chart is    , which is the average standard 
deviation for the test set of data. The control limits are

s

4

3

(21-14)
(21-15)

UCL B s
LCL B s

=
=

Constants B3 and B4 depend on the subgroup size n, as shown 
in Table 21.1.
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Table 21.1 Control Chart Constants

1.4350.5650.989625
1.4900.5100.986920
1.5720.4280.982315
1.7160.2840.972710
1.7610.2390.96939
1.8150.1850.96508
1.8820.1180.95947
1.9700.0300.95156
2.08900.94005
2.26600.92134
2.56800.88623
3.26700.79792

B4B3c4n
s ChartEstimation of σ
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Example 21.2
In semiconductor processing, the photolithography process is 
used to transfer the circuit design to silicon wafers. In the first 
step of the process, a specified amount of a polymer solution, 
photoresist, is applied to a wafer as it spins at high speed on a 
turntable. The resulting photoresist thickness x is a key process 
variable. Thickness data for 25 subgroups are shown in Table 
21.2. Each subgroup consists of three randomly selected 
wafers. Construct     and s control charts for these test data and 
critcially evaluate the results.

x

Solution

The following sample statistics can be calculated from the data in 
Table 21.2:      = 199.8 Å,     = 10.4 Å. For n = 3 the required 
constants from Table 21.1 are c4 = 0.8862, B3 = 0, and B4 = 
2.568. Then the     and s control limits can be calculated from 
Eqs. 21-9 to 21-15. 

x s

x
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The traditional value of c = 3 is selected for Eqs. (21-9) and (21-
10). The resulting control limits are labeled as the “original limits” 
in Fig. 21.5.

Figure 21.5 indicates that sample #5 lies beyond both the UCL for 
both the     and s control charts, while sample #15 is very close to 
a control limit on each chart. Thus, the question arises whether
these two samples are “outliers” that should be omitted from the
analysis. Table 21.2 indicates that sample #5 includes a very large 
value (260.0), while sample #15 includes a very small value 
(150.0). However, unusually large or small numerical values by 
themselves do not justify discarding samples; further investigation 
is required.

Suppose that a more detailed evaluation has discovered a specific 
reason as to why measurements #5 and #15 should be discarded 
(e.g., faulty sensor, data misreported, etc.). In this situation, these 
two samples should be removed and control limits should be 
recalculated based on the remaining 23 samples.

x
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These modified control limits are tabulated below as well as in 
Fig. 21.5.

00LCL

22.726.6UCL  

s Chart Control 
Limits

182.2179.6LCL

216.7220.1UCL  

Chart Control 
Limits

Modified Limits 
(omit samples #5 
and #15)

Original Limits

x
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Table 21.2 Thickness Data (in Å) for Example 21.2

6.7192.0191.5198.9185.613

1.6202.2200.4202.9203.42514.7200.6208.6209.7183.712

9.8201.2208.2190.0205.32414.6208.8225.0196.6204.811

15.8197.6209.7203.3179.7237.7195.2197.4201.5186.610

6.0200.0203.9193.1203.1229.5202.9205.9192.3210.69

1.9186.8188.9186.3185.1215.0198.3202.1192.7200.28

7.0203.6211.1197.1202.5209.0199.8189.7202.8206.97

11.4193.7183.9206.2191.01917.9195.7214.5178.8193.96

11.0206.9215.4211.2194.21828.6227.1212.2209.0260.05

10.8194.6182.9204.0197.1179.4200.1204.1189.3206.94

9.6199.0207.6200.7188.7168.6199.5201.6206.8190.13

27.1181.3150.0195.2198.6159.5193.0202.4193.1183.52

3.7207.1208.1210.1202.9141.8209.4211.120.76209.61

sx
Data

No.sx
Data

No. x x
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Figure 21.5 The     and s control charts for Example 21.2.x
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Theoretical Basis for Quality Control Charts

The traditional SPC methodology is based on the assumption that 
the natural variability for “in control” conditions can be 
characterized by random variations around a constant average 
value,

( ) ( )* (21-16)x k x e k= +

where x(k) is the measurement at time k, x* is the true (but 
unknown) value, and e(k) is an additive error. Traditional control 
charts are based on the following assumptions:

1. Each additive error, {e(k), k = 1, 2, …}, is a zero mean, random 
variable that has the same normal distribution,

2. The additive errors are statistically independent and thus 
uncorrelated. Consequently, e(k) does not depend on e(j) for     
j ≠ k.

( )20,σ .N
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3. The true value of x* is constant.

4. The subgroup size n is the same for all of the subgroups.

The second assumption is referred to as the independent, 
identically, distributed (IID) assumption. Consider an individuals 
control chart for x with x* as its target and “3    control limits”:σ

x *+ 3σ (21-17)
* 3σ (21-18)

UCL
LCL x −

�
�

• These control limits are a special case of Eqs. 21-9 and 21.10 
for the idealized situation where    is known, c = 3, and the 
subgroup size is n = 1.

• The typical choice of c = 3 can be justified as follows.

• Because x is                , the probability p that a measurement lies 
outside the 3    control limits can be calculated from Eq. 21-6:   
p = 1 – 0.9973 = 0.0027.

σ

( )20,σN
σ
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• Thus on average, approximately 3 out of every 1000 
measurements will be outside of the 3    limits.

• The average number of samples before a chart violation occurs 
is referred to as the average run length (ARL).

• For the normal (“in control”) process operation,

σ

1 1ARL 370 (21-19)
0.0027p

=�

• Thus, a Shewhart chart with 3    control limits will have an 
average of one control chart violation every 370 samples, even 
when the process is in a state of control.

• Industrial plant measurements are not normally distributed.

• However, for large subgroup sizes (n > 25),     is 
approximately normally distributed even if x is not, according 
to the famous Central Limit Theorem of statistics 
(Montgomery and Runger, 2003).

σ

x
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• Fortunately, modest deviations from “normality” can be 
tolerated.

• In industrial applications, the control chart data are often 
serially correlated because the current measurement is related to 
previous measurements.

• Standard control charts such as the     and s charts can provide 
misleading results if the data are serially correlated. 

• But if the degree of correlation is known, the control limits can 
be adjusted accordingly (Montgomery, 2001).

x

Pattern Tests and the Western Electric Rules

• We have considered how abnormal process behavior can be 
detected by comparing individual measurements with the    and 
s control chart limits.

• However, the pattern of measurements can also provide useful 
information.

x
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• A wide variety of pattern tests (also called zone rules) can be 
developed based on the IID and normal distribution assumptions 
and the properties of the normal distribution.

• For example, the following excerpts from the Western Electric 
Rules indicate that the process is out of control if one or more of 
the following conditions occur:

1. One data point is outside the 3    control limits.

2. Two out of three consecutive data points are beyond a 2    limit.

3. Four out of five consecutive data points are beyond a 1   limit 
and on one side of the center line.

4. Eight consecutive points are on one side of the center line.

σ

σ

σ

• Pattern tests can be used to augment Shewhart charts.
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• Although Shewhart charts with 3   limits can quickly detect 
large process changes, they are ineffective for small, sustained
process changes (for example, changes smaller than 1.5   )

• Two alternative control charts have been developed to detect 
small changes: the CUSUM and EWMA control charts.

• They also can detect large process changes (for example, 3   
shifts), but detection is usually somewhat slower than for 
Shewhart charts.

σ

σ

σ

CUSUM Control Chart
• The cumulative sum (CUSUM) is defined to be a running 

summation of the deviations of the plotted variable from its 
target. 

• If the sample mean is plotted, the cumulative sum, C(k), is

( ) ( )( )
1

(21-20)
k

j
C k x j T

=
= −∑
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where T is the target for    .

• During normal process operation, C(k) fluctuates around zero.

• But if a process change causes a small shift in    , C(k) will drift 
either upward or downward.

• The CUSUM control chart was originally developed using a 
graphical approach based on V-masks.

• However, for computer calculations, it is more convenient to use
an equivalent algebraic version that consists of two recursive 
equations,

x

x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

max 0, 1 (21-21)

max 0, 1 (21-22)

C k x k T K C k

C k T K x k C k

+ +

− −

 = − + + − 
 = − − + − 

where C+ and C- denote the sums for the high and low 
directions and K is a constant, the slack parameter.
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• The CUSUM calculations are initialized by setting              
C+(0) = C-(0) = 0.

• A deviation from the target that is larger than K increases either 
C+ or C-. 

• A control limit violation occurs when either C+ or C- exceeds a 
specified control limit (or threshold), H. 

• After a limit violation occurs, that sum is reset to zero or to a 
specified value.

• The selection of the threshold H can be based on considerations 
of average run length.

• Suppose that we want to detect whether the sample mean    has 
shifted from the target by a small amount,    .

• The slack parameter K is usually specified as K = 0.5  .

x
δ

δ
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• For the ideal situation where the normally distributed and IID 
assumptions are valid, ARL values have been tabulated for 
specified values of    , K, and H (Ryan, 2000; Montgomery, 
2001).

δ

Table 21.3 Average Run Lengths for CUSUM Control Charts

2.572.193.00
4.013.342.00
10.48.381.00
17.013.30.75
38.026.60.50
139.74.20.25
465.168.0

ARL forARL for Shift from Target
(in multiples of      )σx 4σxH = 5σxH =
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EWMA Control Chart

• Information about past measurements can also be included 
in the control chart calculations by exponentially weighting 
the data.

• This strategy provides the basis for the exponentially-
weighted moving-average (EWMA) control chart. 

• Let    denote the sample mean of the measured variable and 
z denote the EWMA of     . A recursive equation is used to 
calculate z(k),

x
x

( ) ( ) ( ) ( )λ 1 λ 1 (21-23)z k x k z k= + − −

where    is a constant, λ 0 λ 1.≤ ≤

• Note that Eq. 21-27 has the same form as the first-order (or 
exponential) filter that was introduced in Chapter 17.
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• The EWMA control chart consists of a plot of z(k) vs. k, as 
well as a target and upper and lower control limits.

• Note that the EWMA control chart reduces to a Shewhart
chart for    = 1. 

• The EWMA calculations are initialized by setting z(0) = T.

• If the    measurements satisfy the IID condition, the EWMA 
control limits can be derived.

• The theoretical      limits are given by

x

λ

3σ

λ3σ (21-24)
2 λxT ±
−

where      is determined from a set of test data taken when the 
process is in a state of control.

σx

• The target T is selected to be either the desired value of     or the 
grand mean for the test data,    .

x
x



35

C
ha

pt
er

 2
1

• Time-varying control limits can also be derived that provide 
narrower limits for the first few samples, for applications 
where early detection is important (Montgomery, 2001; 
Ryan, 2000).

• Tables of ARL values have been developed for the EWMA 
method, similar to Table 21.3 for the CUSUM method 
(Ryan, 2000).

• The EWMA performance can be adjusted by specifying   .

• For example,    = 0.25 is a reasonable choice because it 
results in an ARL of 493 for no mean shift (    = 0) and an 
ARL of 11 for a mean shift of              

• EWMA control charts can also be constructed for measures 
of variability such as the range and standard deviation.

λ
λ

δ
( )σ δ 1 .x =
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λ

( )δ 0.5σ 1.5= =

σ

Example 21.3
In order to compare Shewhart, CUSUM, and EWMA control 
charts, consider simulated data for the tensile strength of a 
phenolic resin. It is assumed that the tensile strength x is normally 
distributed with a mean of     = 70 MPa and a standard deviation 
of    = 3 MPa. A single measurement is available at each sampling 
instant. A constant                          was added to x(k) for             in 
order to evaluate each chart’s ability to detect a small process
shift. The CUSUM chart was designed using K = 0.5   and H = 5  , 
while the EWMA parameter was specified as     = 0.25.

The relative performance of the Shewhart, CUSUM, and EWMA 
control charts is compared in Fig. 21.6. The Shewhart chart fails 
to detect the 0.5   shift in x. However, both the CUSUM and 
EWMA charts quickly detect this change because limit violations 
occur about ten samples after the shift occurs (at k = 20 and
k = 21, respectively). The mean shift can also be detected by 
applying the Western Electric Rules in the previous section. 

µ
σ

10k ≥

σ σ



37

C
ha

pt
er

 2
1

Figure 21.6 Comparison of Shewhart (top), CUSUM (middle), 
and EWMA (bottom) control charts for Example 21.3.
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Process Capability Indices

• Process capability indices (or process capability ratios) 
provide a measure of whether an “in control” process is 
meeting its product specifications. 

• Suppose that a quality variable x must have a volume between 
an upper specification limit (USL) and a lower specification 
limit (LSL), in order for product to satisfy customer 
requirements. 

• The Cp capability index is defined as,

(21-25)
6σp

USL LSLC −�

where     is the standard deviation of x.σ
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• Suppose that Cp = 1 and x is normally distributed. 

• Based on Eq. 21-6, we would expect that 99.73% of the 
measurements satisfy the specification limits.

• If Cp > 1, the product specifications are satisfied; for Cp < 1, 
they are not. 

• A second capability index Cpk is based on average process 
performance (  ), as well as process variability (  ). It is defined 
as:

x σ

[ ]min ,
(21-26)

3σpk
x LSL USL x

C
− −

�

• Although both Cp and Cpk are used, we consider Cpk to be 
superior to Cp for the following reason. 

• If     = T, the process is said to be “centered” and Cpk = Cp. 

• But for     ≠ T, Cp does not change, even though the process 
performance is worse, while Cpk decreases. For this reason, Cpk
is preferred.

x

x
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• In practical applications, a common objective is to have a 
capability index of 2.0 while a value greater than 1.5 is 
considered to be acceptable.

• Three important points should be noted concerning the Cp and 
Cpk capability indices: 

1. The data used in the calculations do not have to be normally 
distributed.

2. The specification limits, USL and LSL, and the control limits, 
UCL and LCL, are not related. The specification limits denote 
the desired process performance, while the control limits 
represent actual performance during normal operation when the 
process is in control. 
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3. The numerical values of the Cp and Cpk capability indices in 
(21-25) and (21-26) are only meaningful when the process is in 
a state of control. However, other process performance indices
are available to characterize process performance when the 
process is not in a state of control. They can be used to 
evaluate the incentives for improved process control (Shunta, 
1995).

Example 21.4
Calculate the average values of the Cp and Cpk capability indices 
for the photolithography thickness data in Example 21.2. Omit 
the two outliers (samples #5 and #15) and assume that the upper 
and lower specification limits for the photoresist thickness are 
USL=235 Å and LSL = 185 Å.  
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Solution

After samples #5 and #15 are omitted, the grand mean is         
Å, and the standard deviation of    (estimated from Eq. 

(21-13) with c4 = 0.8862) is 
199x = x

4

8.83σ̂ 5.75
0.8862 3x

s
c n

= = = Å

From Eqs. 21-25 and 21-26,

( )
[ ]

( )

235 185 1.45
6 5.75

min 199.5 185,235 199.5
0.84

3 5.75

p

pk

C

C

−
= =

− −
= =

Note the Cpk is much smaller than the Cp because     is closer to 
the LSL than the USL.

x
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Six Sigma Approach
• Product quality specifications continue to become more 

stringent as a result of market demands and intense worldwide 
competition. 

• Meeting quality requirements is especially difficult for 
products that consist of a very large number of components 
and for manufacturing processes that consist of hundreds of 
individual steps. 

• For example, the production of a microelectronics device 
typically requires 100-300 batch processing steps. 

• Suppose that there are 200 steps and that each one must meet a 
quality specification in order for the final product to function
properly. 

• If each step is independent of the others and has a 99% 
success rate, the overall yield of satisfactory product is 
(0.99)200 =0.134 or only 13.4%. 
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Six Sigma Approach

• This low yield is clearly unsatisfactory. 

• Similarly, even when a processing step meets 3   specifications 
(99.73% success rate), it will still result in an average of 2700 
“defects” for every million produced. 

• Furthermore, the overall yield for this 200-step process is still 
only 58.2%.

• Suppose that a product quality variable x is normally distributed,  

• As indicated on the left portion of Fig. 21.7, if the product 
specifications are            , the product will meet the 
specifications 99.999998% of the time.

• Thus, on average, there will only be two defective products for 
every billion produced.

σ

( )2µ, σ .N

µ 6σ±
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• Now suppose that the process operation changes so that the 
mean value is shifted from            to either                 or           

, as shown on the right side of Fig. 21.7.

• Then the product specifications will still be satisfied 99.99966% 
of the time, which corresponds to 3.4 defective products per 
million produced.

• In summary, if the variability of a manufacturing operation is so 
small that the product specification limits are equal to        , 
then the limits can be satisfied even if the mean value of x shifts 
by as much as 1.5     

• This very desirable situation of near perfect product quality is
referred to as six sigma quality.

µx = µ 1.5σx = +
µ 1.5σx = −

µ 6σ±

σ.
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Figure 21.7 The Six Sigma Concept (Montgomery and Runger, 
2003). Left: No shift in the mean. Right: 1.5    shift.σ
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Comparison of Statistical Process Control and Automatic 
Process Control

• Statistical process control and automatic process control (APC) 
are complementary techniques that were developed for different 
types of problems. 

• APC is widely used in the process industries because no 
information is required about the source and type of process 
disturbances. 

• APC is most effective when the measurement sampling period is 
relatively short compared to the process settling time and when 
the process disturbances tend to be deterministic (that is, when
they have a sustained nature such as a step or ramp disturbance).

• In statistical process control, the objective is to decide whether 
the process is behaving normally and to identify a special cause
when it is not. 
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• In contrast to APC, no corrective action is taken when the 
measurements are within the control chart limits. 

• From an engineering perspective, SPC is viewed as a 
monitoring rather than a control strategy. 

• It is very effective when the normal process operation can be 
characterized by random fluctuations around a mean value. 

• SPC is an appropriate choice for monitoring problems where the 
sampling period is long compared to the process settling time, 
and the process disturbances tend to be random rather than 
deterministic. 

• SPC has been widely used for quality control in both discrete-
parts manufacturing and the process industries. 

• In summary, SPC and APC should be regarded as 
complementary rather than competitive techniques.
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• They were developed for different types of situations and have 
been successfully used in the process industries.

• Furthermore, a combination of the two methods can be very 
effective.

Multivariate Statistical Techniques
• For common SPC monitoring problems, two or more quality 

variables are important, and they can be highly correlated. 

• For example, ten or more quality variables are typically 
measured for synthetic fibers. 

• For these situations, multivariable SPC techniques can offer 
significant advantages over the single-variable methods 
discussed in Section 21.2. 

• In the statistics literature, these techniques are referred to as 
multivariate methods, while the standard Shewhart and 
CUSUM control charts are examples of univariate methods. 
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Example 21.5
The effluent stream from a wastewater treatment process is 
monitored to make sure that two process variables, the biological 
oxidation demand (BOD) and the solids content, meet 
specifications. Representative data are shown in Table 21.4. 
Shewhart charts for the sample means are shown in parts (a) and 
(b) of Fig. 21.8. These univariate control charts indicate that the 
process appears to be in-control because no chart violations 
occur for either variable. However, the bivariate control chart in 
Fig. 21.8c indicates that the two variables are highly correlated 
because the solids content tends to be large when the BOD is 
large and vice versa. When the two variables are considered 
together, their joint confidence limit (for example, at the 99% 
confidence level) is an ellipse, as shown in Fig. 21.8c. Sample 
# 8 lies well beyond the 99% limit, indicating an out-of-control 
condition. 
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By contrast, this sample lies within the Shewhart control chart 
limits for both individual variables. This example has 
demonstrated that univariate SPC techniques such as Shewhart
charts can fail to detect abnormal process behavior when the 
process variables are highly correlated. By contrast, the abnormal 
situation was readily apparent from the multivariate analysis. 
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Table 21.4 Wastewater Treatment Data

139220.330139618.415
140919.929138017.514
152131.528138420.413
140519.627141722.812
143122.426142623.211
142722.925144826.010
139320.024134114.39
145426.12315409.08
147627.622150329.87
134714.921148527.86
136116.820133413.15
142624.719144825.24
139819.418132213.23
134913.817145823.62
134516.816138017.71

Solids 
(mg/L)

BOD 
(mg/L)

Sample 
Number

Solids 
(mg/L)

BOD 
(mg/L)

Sample 
Number
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Confidence 
regions for 
Example 21.5 
univariate (a) 
and (b), 
bivariate (c).
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Figure 21.9 Univariate and bivariate confidence regions for two 
random variables, x1 and x2 (modified from Alt et al., 1998).
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Hotelling’s T2 Statistic

• Suppose that it is desired to use SPC techniques to monitor p
variables, which are correlated and normally distributed. 

• Let x denote the column vector of these p variables,                 
x = col [x1, x2, ..., xp]. 

• At each sampling instant, a subgroup of n measurements is 
made for each variable. 

• The subgroup sample means for the kth sampling instant can 
be expressed as a column vector:  

• Multivariate control charts are traditionally based on 
Hotelling’s T2 statistic, 

( ) ( ) ( ) ( )1 2, , , px k col x k x k x k =  …

( ) ( ) ( )2 1 (21-27)TT k n x k x S x k x−   − −   �
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where T2(k) denotes the value of the T2 statistic at the kth
sampling instant.

• The vector of grand means    and the covariance matrix S are 
calculated for a test set of data for in-control conditions. 

• By definition Sij, the (i,j)-element of matrix S, is the sample 
covariance of xi and xj:

x

( ) ( )
1

1 (21-28)
N T

ij i i j j
k

S x k x x k x
N =

  − −   ∑�

• In Eq. (21-28) N is the number of subgroups and     denotes the 
grand mean for    . 

• Note that T2 is a scalar, even though the other quantities in     
Eq. 21-27 are vectors and matrices.

• The inverse of the sample covariance matrix, S-1, scales the p
variables and accounts for correlation among them.

ix
ix
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• A multivariate process is considered to be out-of-control at the 
kth sampling instant if T2(k) exceeds an upper control limit, 
UCL. 

• (There is no target or lower control limit.) 

Example 21.6
Construct a T2 control chart for the wastewater treatment 
problem of Example 21.5. The 99% control chart limit is         
T2 = 11.63. Is the number of T2 control chart violations 
consistent with the results of Example 21.5?

Solution

The T2 control chart is shown in Fig. 21.10. All of the T2 values 
lie below the 99% confidence limit except for sample #8. This 
result is consistent with the bivariate control chart in Fig. 21.8c. 
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Figure 21.10 T2 control chart for Example 21.5.
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Principal Component Analysis and Partial Least Squares

• Multivariate monitoring based on Hotelling’s T2 statistic can 
be effective if the data are not highly correlated and the 
number of variables p is not large (for example, p < 10). 

• For highly correlated data, the S matrix is poorly conditioned 
and the T2 approach becomes problematic. 

• Fortunately, alternative multivariate monitoring techniques 
have been developed that are very effective for monitoring 
problems with large numbers of variables and highly correlated 
data. 

• The Principal Component Analysis (PCA) and Partial Least  
Squares (PLS) methods have received the most attention in the 
process control community. 
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Control Performance Monitoring
• In order to achieve the desired process operation, the control 

system must function properly. 

• In large processing plants, each plant operator is typically 
responsible for 200 to 1000 loops. 

• Thus, there are strong incentives for automated control (or
controller) performance monitoring (CPM). 

• The overall objectives of CPM are: (1) to determine whether 
the control system is performing in a satisfactory manner, and 
(2) to diagnose the cause of any unsatisfactory performance.
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Basic Information for Control Performance Monitoring

• In order to monitor the performance of a single standard PI or 
PID control loop, the basic information in Table 21.5 should be 
available.

• Service factors should be calculated for key components of the 
control loop such as the sensor and final control element. 

• Low service factors and/or frequent maintenance suggest 
chronic problems that require attention. 

• The fraction of time that the controller is in the automatic 
mode is a key metric. 

• A low value indicates that the loop is frequently in the manual 
mode and thus requires attention. 

• Service factors for computer hardware and software should 
also be recorded. 



62

C
ha

pt
er

 2
1

• Simple statistical measures such as the sample mean and 
standard deviation can indicate whether the controlled variable 
is achieving its target and how much control effort is required.

• An unusually small standard deviation for a measurement 
could result from a faulty sensor with a constant output signal,
as noted in Section 21.1. 

• By contrast, an unusually large standard deviation could be 
caused by equipment degradation or even failure, for example, 
inadequate mixing due to a faulty vessel agitator. 

• A high alarm rate can be indicative of poor control system 
performance. 

• Operator logbooks and maintenance records are valuable 
sources of information, especially if this information has been 
captured in a computer database. 
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•

Table 21.5 Basic Data for Control Loop Monitoring

Operator logbooks and maintenance records
• Alarm summaries
• Mean and standard deviation for the controller output

• Mean and standard deviation for the control error (set point –
measurement)

• Service factors (time in use/total time period)
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Control Performance Monitoring Techniques
• Chapters 6 and 12 introduced traditional control loop 

performance criteria such as rise time, settling time, overshoot, 
offset, degree of oscillation, and integral error criteria. 

• CPM methods can be developed based on one or more of these 
criteria. 

• If a process model is available, then process monitoring 
techniques based on monitoring the model residuals can be 
employed

• In recent years, a variety of statistically based CPM methods 
have been developed that do not require a process model.

• Control loops that are excessively oscillatory or very sluggish 
can be detected using correlation techniques. 

• Other methods are based on calculating a standard deviation or 
the ratio of two standard deviations.
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• Control system performance can be assessed by comparison 
with a benchmark. 

• For example, historical data representing periods of 
satisfactory control could be used as a benchmark. 

• Alternatively, the benchmark could be an ideal control system 
performance such as minimum variance control. 

• As the name implies, a minimum variance controller 
minimizes the variance of the controlled variable when 
unmeasured, random disturbances occur. 

• This ideal performance limit can be estimated from closed-
loop operating data if the process time delay is known or can 
be estimated. 

• The ratio of minimum variance to the actual variance is used as 
the measure of control system performance. 
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• This statistically based approach has been commercialized, and 
many successful industrial applications have been reported. 

• For example, the Eastman Chemical Company has develop a 
large-scale system that assesses the performance of over 
14,000 PID controllers in 40 of their plants (Paulonis and Cox, 
2003).

• Although several CPM techniques are available and have been 
successfully applied, they also have several shortcomings. 

• First, most of the existing techniques assess control system 
performance but do not diagnose the root cause of the poor 
performance. 

• Thus busy plant personnel must do this “detective work”. 

• A second shortcoming is that most CPM methods are restricted 
to the analysis of individual control loops. 
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• The minimum variance approach has been extended to MIMO 
control problems, but the current formulations are complicated 
and are usually restricted to unconstrained control systems. 

• Monitoring strategies for MPC systems are a subject of current 
research.


